Diegif: An efficient and secured DICOM to EGIF conversion framework for confidentiality in machine learning training

IF 3.2 Q3 Mathematics
Abdullah Al Siam , Md Maruf Hassan , Md Atikur Rahaman , Masuk Abdullah
{"title":"Diegif: An efficient and secured DICOM to EGIF conversion framework for confidentiality in machine learning training","authors":"Abdullah Al Siam ,&nbsp;Md Maruf Hassan ,&nbsp;Md Atikur Rahaman ,&nbsp;Masuk Abdullah","doi":"10.1016/j.rico.2025.100515","DOIUrl":null,"url":null,"abstract":"<div><div>Medical imaging plays a critical role in contemporary healthcare, although it confronts issues relating to storage, security, and confidentiality in machine learning-based diagnostic systems. The proposed framework, <em>Diegif</em>, presents an efficient and safe mechanism for converting DICOM (Digital Imaging and Communications in Medicine) data into EGIF (Encrypted Graphics Interchange Format) files to overcome these challenges. The framework comprises four key components: (1) converting DICOM files to GIF format with encryption, (2) decrypting EGIF files for processing, (3) enabling confidentiality-preserving machine learning training using EGIF data, and (4) facilitating physician diagnosis and report generation based on trained machine learning models. The <em>Diegif</em> framework aims to enhance storage efficiency by decreasing file sizes by 66.32%, thereby improving data transport efficacy and cloud storage affordability while preserving strong encryption for data confidentiality. Pseudocode algorithms are provided for each phase, ensuring reproducibility and transparency. This paper illustrates the framework’s potential to medical image processing, secure storage, and AI-driven diagnostic functions in healthcare.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100515"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Medical imaging plays a critical role in contemporary healthcare, although it confronts issues relating to storage, security, and confidentiality in machine learning-based diagnostic systems. The proposed framework, Diegif, presents an efficient and safe mechanism for converting DICOM (Digital Imaging and Communications in Medicine) data into EGIF (Encrypted Graphics Interchange Format) files to overcome these challenges. The framework comprises four key components: (1) converting DICOM files to GIF format with encryption, (2) decrypting EGIF files for processing, (3) enabling confidentiality-preserving machine learning training using EGIF data, and (4) facilitating physician diagnosis and report generation based on trained machine learning models. The Diegif framework aims to enhance storage efficiency by decreasing file sizes by 66.32%, thereby improving data transport efficacy and cloud storage affordability while preserving strong encryption for data confidentiality. Pseudocode algorithms are provided for each phase, ensuring reproducibility and transparency. This paper illustrates the framework’s potential to medical image processing, secure storage, and AI-driven diagnostic functions in healthcare.
Diegif:一个高效和安全的DICOM到EGIF的转换框架,用于机器学习培训的机密性
医学成像在当代医疗保健中起着至关重要的作用,尽管它在基于机器学习的诊断系统中面临着与存储、安全性和机密性相关的问题。提出的框架Diegif提供了一种有效和安全的机制,将DICOM(医学数字成像和通信)数据转换为EGIF(加密图形交换格式)文件,以克服这些挑战。该框架包括四个关键组件:(1)将DICOM文件加密转换为GIF格式,(2)解密EGIF文件进行处理,(3)使用EGIF数据进行保密性机器学习训练,以及(4)基于训练有素的机器学习模型促进医生诊断和报告生成。Diegif框架旨在通过减少66.32%的文件大小来提高存储效率,从而提高数据传输效率和云存储的可负担性,同时为数据保密性保留强大的加密。伪代码算法提供了每个阶段,确保再现性和透明度。本文阐述了该框架在医疗图像处理、安全存储和人工智能驱动的医疗诊断功能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信