Daily allocation of energy consumption forecasting of a power distribution company using optimized least squares support vector machine

Q3 Mathematics
Marzia Ahmed , Mohd Herwan Sulaiman , Md. Maruf Hassan , Md. Atikur Rahaman , Mohammad Bin Amin
{"title":"Daily allocation of energy consumption forecasting of a power distribution company using optimized least squares support vector machine","authors":"Marzia Ahmed ,&nbsp;Mohd Herwan Sulaiman ,&nbsp;Md. Maruf Hassan ,&nbsp;Md. Atikur Rahaman ,&nbsp;Mohammad Bin Amin","doi":"10.1016/j.rico.2025.100518","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate energy consumption forecasting is critical for efficient power distribution management. This study presents a novel approach for optimal allocation forecasting of energy consumption in a power distribution company, utilizing the Least Squares Support Vector Machine (LSSVM) optimized by novel variants of the Barnacle Mating Optimizer (BMO) such as the new Gooseneck Barnacle Optimizer and Selective Opposition-based constrained BMO. The optimized LSSVM hyper-parameters, specifically the regularization parameter (<span><math><mi>γ</mi></math></span>) and the kernel parameter (<span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>), were applied to test data to enhance accuracy guided by the Mean Absolute Prediction Error (MAPE), ensuring precise alignment of forecasted values with actual energy consumption data. The results indicate that the novel gooseneck barnacle base-optimized LSSVM provides a robust and reliable solution with accuracy 99.98% for daily energy consumption for allocation forecasting, making it a valuable tool for power distribution companies aiming to optimize their resource allocation and planning processes.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100518"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate energy consumption forecasting is critical for efficient power distribution management. This study presents a novel approach for optimal allocation forecasting of energy consumption in a power distribution company, utilizing the Least Squares Support Vector Machine (LSSVM) optimized by novel variants of the Barnacle Mating Optimizer (BMO) such as the new Gooseneck Barnacle Optimizer and Selective Opposition-based constrained BMO. The optimized LSSVM hyper-parameters, specifically the regularization parameter (γ) and the kernel parameter (σ2), were applied to test data to enhance accuracy guided by the Mean Absolute Prediction Error (MAPE), ensuring precise alignment of forecasted values with actual energy consumption data. The results indicate that the novel gooseneck barnacle base-optimized LSSVM provides a robust and reliable solution with accuracy 99.98% for daily energy consumption for allocation forecasting, making it a valuable tool for power distribution companies aiming to optimize their resource allocation and planning processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信