A novel investigation of quaternion Julia and Mandelbrot sets using the viscosity iterative approach

IF 3.2 Q3 Mathematics
Nabaraj Adhikari, Wutiphol Sintunavarat
{"title":"A novel investigation of quaternion Julia and Mandelbrot sets using the viscosity iterative approach","authors":"Nabaraj Adhikari,&nbsp;Wutiphol Sintunavarat","doi":"10.1016/j.rico.2025.100525","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel technique for visualizing quaternion Julia and Mandelbrot sets of a quaternion-valued polynomial mapping <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>m</mi><mi>q</mi><mo>+</mo><mi>c</mi></mrow></math></span>, where <span><math><mi>q</mi></math></span> is a quaternion variable, <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>m</mi><mo>,</mo><mi>c</mi></mrow></math></span> are quaternion parameters, by employing the viscosity approximation method. The investigation begins with a study of a new escape criterion, specifically designed for generating quaternion Julia and Mandelbrot sets using the viscosity approximation technique. Based on this result, two dimensions and three dimensions cross-sections of quaternion Julia and Mandelbrot sets are created. The paper also examines how variations in the parameters of the iterative methods impact the resulting sets’ characteristics, such as shape, size, symmetry, and color.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100525"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel technique for visualizing quaternion Julia and Mandelbrot sets of a quaternion-valued polynomial mapping T(q)=qn+mq+c, where q is a quaternion variable, nN{1}, and m,c are quaternion parameters, by employing the viscosity approximation method. The investigation begins with a study of a new escape criterion, specifically designed for generating quaternion Julia and Mandelbrot sets using the viscosity approximation technique. Based on this result, two dimensions and three dimensions cross-sections of quaternion Julia and Mandelbrot sets are created. The paper also examines how variations in the parameters of the iterative methods impact the resulting sets’ characteristics, such as shape, size, symmetry, and color.
四元数Julia和Mandelbrot集的新研究使用粘性迭代方法
本文提出了一种新的四元数值多项式映射T(q)=qn+mq+c的四元数Julia和Mandelbrot集合的可视化技术,其中q为四元数变量,n∈n∈{1},m,c为四元数参数。调查开始与一个新的逃逸标准的研究,专门设计用于生成四元数朱莉娅和曼德尔布罗特集使用粘度近似技术。在此基础上,分别建立了四元数Julia集和Mandelbrot集的二维和三维截面。本文还研究了迭代方法参数的变化如何影响结果集的特征,如形状、大小、对称性和颜色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信