Impacts of increasing compound hot-dry events on vegetation under the warming-wetting trend in Northwest China

IF 8 1区 环境科学与生态学 Q1 GEOGRAPHY, PHYSICAL
Zejin Liu , Limin Jiao , Xihong Lian
{"title":"Impacts of increasing compound hot-dry events on vegetation under the warming-wetting trend in Northwest China","authors":"Zejin Liu ,&nbsp;Limin Jiao ,&nbsp;Xihong Lian","doi":"10.1016/j.geosus.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>In a warming world, climate extremes tend to be more frequent and intense. The exceptional response of ecosystems triggered by extreme climate events under a warmer and wetter climate in northwest China (NWC) has aroused growing concern. However, understanding the responses of vegetation to climate extremes from the compound events perspective remains challenging. In this study, we identify the climate dynamics in NWC during 1971–2020 based on daily meteorological observations, focusing on the changes in compound hot-dry events (CHDEs) during the warmer and wetter period. We further explore the effects of CHDEs on vegetation by examining vegetation anomalies and recovery time using daily gross primary productivity (GPP) data. The results show a clear warmer and wetter period in NWC during 2000–2020. No signs of a hiatus in CHDEs increase are observed during this period, and even the duration of CHDEs in western NWC keeps showing an increasing tendency. Vegetation in eastern NWC, with a lower probability of GPP anomalies, exhibits stronger resistance of ecosystems to CHDEs than in western NWC. In NWC, vegetation typically returns to its normal state in 5.50 days on average, but exhibits greater resilience in the western region, where it takes less recovery time (4.82 days). Vegetation in the central region shows the lowest probability of GPP anomalies and relatively longer recovery time, likely due to its higher altitudes. Our research underscores the imperative to address the considerable impacts of CHDEs on vegetation growth even as the regional climate becomes increasingly warmer and wetter.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 2","pages":"Article 100222"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000774","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In a warming world, climate extremes tend to be more frequent and intense. The exceptional response of ecosystems triggered by extreme climate events under a warmer and wetter climate in northwest China (NWC) has aroused growing concern. However, understanding the responses of vegetation to climate extremes from the compound events perspective remains challenging. In this study, we identify the climate dynamics in NWC during 1971–2020 based on daily meteorological observations, focusing on the changes in compound hot-dry events (CHDEs) during the warmer and wetter period. We further explore the effects of CHDEs on vegetation by examining vegetation anomalies and recovery time using daily gross primary productivity (GPP) data. The results show a clear warmer and wetter period in NWC during 2000–2020. No signs of a hiatus in CHDEs increase are observed during this period, and even the duration of CHDEs in western NWC keeps showing an increasing tendency. Vegetation in eastern NWC, with a lower probability of GPP anomalies, exhibits stronger resistance of ecosystems to CHDEs than in western NWC. In NWC, vegetation typically returns to its normal state in 5.50 days on average, but exhibits greater resilience in the western region, where it takes less recovery time (4.82 days). Vegetation in the central region shows the lowest probability of GPP anomalies and relatively longer recovery time, likely due to its higher altitudes. Our research underscores the imperative to address the considerable impacts of CHDEs on vegetation growth even as the regional climate becomes increasingly warmer and wetter.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geography and Sustainability
Geography and Sustainability Social Sciences-Geography, Planning and Development
CiteScore
16.70
自引率
3.10%
发文量
32
审稿时长
41 days
期刊介绍: Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues. Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes: Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations; Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability; Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing; Sustainable Development: Theory, practice and critical challenges in sustainable development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信