Unsupervised meta-learning with domain adaptation based on a multi-task reconstruction-classification network for few-shot hyperspectral image classification
{"title":"Unsupervised meta-learning with domain adaptation based on a multi-task reconstruction-classification network for few-shot hyperspectral image classification","authors":"Yu Liu , Caihong Mu , Shanjiao Jiang , Yi Liu","doi":"10.1016/j.jiixd.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Although the deep-learning method has achieved great success for hyperspectral image (HSI) classification, the few-shot HSI classification deserves sufficient study because it is difficult and expensive to acquire labeled samples. In fact, the meta-learning methods can improve the performance for few-shot HSI classification effectively. However, most of the existing meta-learning methods for HSI classification are supervised, which still heavily rely on the labeled data for meta-training. Moreover, there are many cross-scene classification tasks in the real world, and domain adaptation of unsupervised meta-learning has been ignored for HSI classification so far. To address the above issues, this paper proposes an unsupervised meta-learning method with domain adaptation based on a multi-task reconstruction-classification network (MRCN) for few-shot HSI classification. MRCN does not need any labeled data for meta-training, where the pseudo labels are generated by multiple spectral random sampling and data augmentation. The meta-training of MRCN jointly learns a shared encoding representation for two tasks and domains. On the one hand, we design an encoder-classifier to learn the classification task on the source-domain data. On the other hand, we devise an encoder-decoder to learn the reconstruction task on the target-domain data. The experimental results on four HSI datasets demonstrate that MRCN preforms better than several state-of-the-art methods with only two to five labeled samples per class. To the best of our knowledge, the proposed method is the first unsupervised meta-learning method that considers the domain adaptation for few-shot HSI classification.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 2","pages":"Pages 103-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although the deep-learning method has achieved great success for hyperspectral image (HSI) classification, the few-shot HSI classification deserves sufficient study because it is difficult and expensive to acquire labeled samples. In fact, the meta-learning methods can improve the performance for few-shot HSI classification effectively. However, most of the existing meta-learning methods for HSI classification are supervised, which still heavily rely on the labeled data for meta-training. Moreover, there are many cross-scene classification tasks in the real world, and domain adaptation of unsupervised meta-learning has been ignored for HSI classification so far. To address the above issues, this paper proposes an unsupervised meta-learning method with domain adaptation based on a multi-task reconstruction-classification network (MRCN) for few-shot HSI classification. MRCN does not need any labeled data for meta-training, where the pseudo labels are generated by multiple spectral random sampling and data augmentation. The meta-training of MRCN jointly learns a shared encoding representation for two tasks and domains. On the one hand, we design an encoder-classifier to learn the classification task on the source-domain data. On the other hand, we devise an encoder-decoder to learn the reconstruction task on the target-domain data. The experimental results on four HSI datasets demonstrate that MRCN preforms better than several state-of-the-art methods with only two to five labeled samples per class. To the best of our knowledge, the proposed method is the first unsupervised meta-learning method that considers the domain adaptation for few-shot HSI classification.