Unsupervised meta-learning with domain adaptation based on a multi-task reconstruction-classification network for few-shot hyperspectral image classification

Yu Liu , Caihong Mu , Shanjiao Jiang , Yi Liu
{"title":"Unsupervised meta-learning with domain adaptation based on a multi-task reconstruction-classification network for few-shot hyperspectral image classification","authors":"Yu Liu ,&nbsp;Caihong Mu ,&nbsp;Shanjiao Jiang ,&nbsp;Yi Liu","doi":"10.1016/j.jiixd.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Although the deep-learning method has achieved great success for hyperspectral image (HSI) classification, the few-shot HSI classification deserves sufficient study because it is difficult and expensive to acquire labeled samples. In fact, the meta-learning methods can improve the performance for few-shot HSI classification effectively. However, most of the existing meta-learning methods for HSI classification are supervised, which still heavily rely on the labeled data for meta-training. Moreover, there are many cross-scene classification tasks in the real world, and domain adaptation of unsupervised meta-learning has been ignored for HSI classification so far. To address the above issues, this paper proposes an unsupervised meta-learning method with domain adaptation based on a multi-task reconstruction-classification network (MRCN) for few-shot HSI classification. MRCN does not need any labeled data for meta-training, where the pseudo labels are generated by multiple spectral random sampling and data augmentation. The meta-training of MRCN jointly learns a shared encoding representation for two tasks and domains. On the one hand, we design an encoder-classifier to learn the classification task on the source-domain data. On the other hand, we devise an encoder-decoder to learn the reconstruction task on the target-domain data. The experimental results on four HSI datasets demonstrate that MRCN preforms better than several state-of-the-art methods with only two to five labeled samples per class. To the best of our knowledge, the proposed method is the first unsupervised meta-learning method that considers the domain adaptation for few-shot HSI classification.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 2","pages":"Pages 103-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although the deep-learning method has achieved great success for hyperspectral image (HSI) classification, the few-shot HSI classification deserves sufficient study because it is difficult and expensive to acquire labeled samples. In fact, the meta-learning methods can improve the performance for few-shot HSI classification effectively. However, most of the existing meta-learning methods for HSI classification are supervised, which still heavily rely on the labeled data for meta-training. Moreover, there are many cross-scene classification tasks in the real world, and domain adaptation of unsupervised meta-learning has been ignored for HSI classification so far. To address the above issues, this paper proposes an unsupervised meta-learning method with domain adaptation based on a multi-task reconstruction-classification network (MRCN) for few-shot HSI classification. MRCN does not need any labeled data for meta-training, where the pseudo labels are generated by multiple spectral random sampling and data augmentation. The meta-training of MRCN jointly learns a shared encoding representation for two tasks and domains. On the one hand, we design an encoder-classifier to learn the classification task on the source-domain data. On the other hand, we devise an encoder-decoder to learn the reconstruction task on the target-domain data. The experimental results on four HSI datasets demonstrate that MRCN preforms better than several state-of-the-art methods with only two to five labeled samples per class. To the best of our knowledge, the proposed method is the first unsupervised meta-learning method that considers the domain adaptation for few-shot HSI classification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信