A new class of fault detection and diagnosis methods by fusion of spatially distributed and time-dependent features

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yan Chen, Xiaoyu Zhang, Dazi Li, Jinglin Zhou
{"title":"A new class of fault detection and diagnosis methods by fusion of spatially distributed and time-dependent features","authors":"Yan Chen,&nbsp;Xiaoyu Zhang,&nbsp;Dazi Li,&nbsp;Jinglin Zhou","doi":"10.1016/j.jprocont.2024.103372","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlinear, non-Gaussian, and dynamic features pose a great challenge for complex fault detection and fault diagnosis (FDD). Focusing on fault detection, independent component analysis (ICA) and adversarial autoencoder (AAE) are fused to form a new method for nonlinear non-Gaussian latent variable extraction: ICA–AAE. In addition, a strategy for establishing more accurate fault detection thresholds using tail distribution features is presented. Furthermore, a new class of fault diagnosis frameworks to fully exploit the information obtained from normal samples is developed. Fault data are first re-represented using the established ICA–AAE model. Then, the low-dimensional spatial distribution features with their inherited high-dimensional temporal dependencies are synthesized into image information using an image-based approach, and a spatio-temporal fusion fault diagnosis method is implemented using a convolutional neural network (CNN). Tennessee Eastman (TE) process results show that the proposed methods can achieve more accurate fault detection and diagnosis.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"146 ","pages":"Article 103372"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424002129","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear, non-Gaussian, and dynamic features pose a great challenge for complex fault detection and fault diagnosis (FDD). Focusing on fault detection, independent component analysis (ICA) and adversarial autoencoder (AAE) are fused to form a new method for nonlinear non-Gaussian latent variable extraction: ICA–AAE. In addition, a strategy for establishing more accurate fault detection thresholds using tail distribution features is presented. Furthermore, a new class of fault diagnosis frameworks to fully exploit the information obtained from normal samples is developed. Fault data are first re-represented using the established ICA–AAE model. Then, the low-dimensional spatial distribution features with their inherited high-dimensional temporal dependencies are synthesized into image information using an image-based approach, and a spatio-temporal fusion fault diagnosis method is implemented using a convolutional neural network (CNN). Tennessee Eastman (TE) process results show that the proposed methods can achieve more accurate fault detection and diagnosis.
一种融合空间分布特征和时变特征的新型故障检测与诊断方法
非线性、非高斯和动态特征对复杂故障检测和诊断(FDD)提出了很大的挑战。以故障检测为重点,将独立分量分析(ICA)和对抗自编码器(AAE)相融合,形成了一种新的非线性非高斯潜变量提取方法:ICA - AAE。此外,提出了一种利用尾部分布特征建立更精确的故障检测阈值的策略。在此基础上,提出了一种新的故障诊断框架,以充分利用从正常样本中获得的信息。首先使用已建立的ICA-AAE模型对故障数据进行再现。然后,利用基于图像的方法将低维空间分布特征及其继承的高维时间依赖关系合成为图像信息,并利用卷积神经网络(CNN)实现时空融合故障诊断方法。田纳西伊士曼(Tennessee Eastman, TE)过程结果表明,所提出的方法可以实现更准确的故障检测和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信