MSFFT-Net: A multi-scale feature fusion transformer network for underwater image enhancement

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zeju Wu , Kaiming Chen , Panxin Ji , Haoran Zhao , Xin Sun
{"title":"MSFFT-Net: A multi-scale feature fusion transformer network for underwater image enhancement","authors":"Zeju Wu ,&nbsp;Kaiming Chen ,&nbsp;Panxin Ji ,&nbsp;Haoran Zhao ,&nbsp;Xin Sun","doi":"10.1016/j.jvcir.2024.104355","DOIUrl":null,"url":null,"abstract":"<div><div>Due to light attenuation and scattering, underwater images typically experience various levels of degradation. This degradation adversely affect object detection and recognition in underwater imagery. Nevertheless, the methods based on convolutional networks have limitations in capturing long-distance dependencies and the methods based on generative adversarial networks exhibit a poor enhancement effect on local detail features. To address this issue, we propose a Multi-Scale Feature Fusion Transformer Network (MSFFT-Net). We design an Underwater Transformer Feature Extraction Module (UTFEM) for conducting window self-attention calculations via maskless reflection filling, thereby enabling the capture of long-distance dependencies. The Channel Transformer Selective Kernel Fusion module (CTSKF) is devised as a replacement for the skip connection. By employing one-stage multi-scale feature coding recombination and two-stage selective kernel (SK) fusion, the model enhances its focus on local detailed features. Extensive experiments on three publicly available datasets demonstrate that our MSFFT-Net achieves better performance than some well-recognized technologies.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104355"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to light attenuation and scattering, underwater images typically experience various levels of degradation. This degradation adversely affect object detection and recognition in underwater imagery. Nevertheless, the methods based on convolutional networks have limitations in capturing long-distance dependencies and the methods based on generative adversarial networks exhibit a poor enhancement effect on local detail features. To address this issue, we propose a Multi-Scale Feature Fusion Transformer Network (MSFFT-Net). We design an Underwater Transformer Feature Extraction Module (UTFEM) for conducting window self-attention calculations via maskless reflection filling, thereby enabling the capture of long-distance dependencies. The Channel Transformer Selective Kernel Fusion module (CTSKF) is devised as a replacement for the skip connection. By employing one-stage multi-scale feature coding recombination and two-stage selective kernel (SK) fusion, the model enhances its focus on local detailed features. Extensive experiments on three publicly available datasets demonstrate that our MSFFT-Net achieves better performance than some well-recognized technologies.
MSFFT-Net:用于水下图像增强的多尺度特征融合变压器网络
由于光的衰减和散射,水下图像通常会经历不同程度的退化。这种退化对水下图像中的目标检测和识别产生不利影响。然而,基于卷积网络的方法在捕获长距离依赖关系方面存在局限性,而基于生成对抗网络的方法对局部细节特征的增强效果较差。为了解决这个问题,我们提出了一个多尺度特征融合变压器网络(MSFFT-Net)。我们设计了一个水下变压器特征提取模块(UTFEM),通过无掩模反射填充进行窗口自关注计算,从而能够捕获长距离依赖关系。通道变压器选择性核融合模块(CTSKF)被设计为跳过连接的替代品。通过一阶段多尺度特征编码重组和两阶段选择性核融合,增强了模型对局部细节特征的关注。在三个公开可用的数据集上进行的大量实验表明,我们的MSFFT-Net比一些公认的技术取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信