MSFFT-Net: A multi-scale feature fusion transformer network for underwater image enhancement

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zeju Wu , Kaiming Chen , Panxin Ji , Haoran Zhao , Xin Sun
{"title":"MSFFT-Net: A multi-scale feature fusion transformer network for underwater image enhancement","authors":"Zeju Wu ,&nbsp;Kaiming Chen ,&nbsp;Panxin Ji ,&nbsp;Haoran Zhao ,&nbsp;Xin Sun","doi":"10.1016/j.jvcir.2024.104355","DOIUrl":null,"url":null,"abstract":"<div><div>Due to light attenuation and scattering, underwater images typically experience various levels of degradation. This degradation adversely affect object detection and recognition in underwater imagery. Nevertheless, the methods based on convolutional networks have limitations in capturing long-distance dependencies and the methods based on generative adversarial networks exhibit a poor enhancement effect on local detail features. To address this issue, we propose a Multi-Scale Feature Fusion Transformer Network (MSFFT-Net). We design an Underwater Transformer Feature Extraction Module (UTFEM) for conducting window self-attention calculations via maskless reflection filling, thereby enabling the capture of long-distance dependencies. The Channel Transformer Selective Kernel Fusion module (CTSKF) is devised as a replacement for the skip connection. By employing one-stage multi-scale feature coding recombination and two-stage selective kernel (SK) fusion, the model enhances its focus on local detailed features. Extensive experiments on three publicly available datasets demonstrate that our MSFFT-Net achieves better performance than some well-recognized technologies.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104355"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to light attenuation and scattering, underwater images typically experience various levels of degradation. This degradation adversely affect object detection and recognition in underwater imagery. Nevertheless, the methods based on convolutional networks have limitations in capturing long-distance dependencies and the methods based on generative adversarial networks exhibit a poor enhancement effect on local detail features. To address this issue, we propose a Multi-Scale Feature Fusion Transformer Network (MSFFT-Net). We design an Underwater Transformer Feature Extraction Module (UTFEM) for conducting window self-attention calculations via maskless reflection filling, thereby enabling the capture of long-distance dependencies. The Channel Transformer Selective Kernel Fusion module (CTSKF) is devised as a replacement for the skip connection. By employing one-stage multi-scale feature coding recombination and two-stage selective kernel (SK) fusion, the model enhances its focus on local detailed features. Extensive experiments on three publicly available datasets demonstrate that our MSFFT-Net achieves better performance than some well-recognized technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信