Lindong Wang , Hongya Tuo , Yu Yuan , Henry Leung , Zhongliang Jing
{"title":"RCMixer: Radar-camera fusion based on vision transformer for robust object detection","authors":"Lindong Wang , Hongya Tuo , Yu Yuan , Henry Leung , Zhongliang Jing","doi":"10.1016/j.jvcir.2024.104367","DOIUrl":null,"url":null,"abstract":"<div><div>In real-world object detection applications, the camera would be affected by poor lighting conditions, resulting in a deteriorate performance. Millimeter-wave radar and camera have complementary advantages, radar point cloud can help detecting small objects under low light. In this study, we focus on feature-level fusion and propose a novel end-to-end detection network RCMixer. RCMixer mainly includes depth pillar expansion(DPE), hierarchical vision transformer and radar spatial attention (RSA) module. DPE enhances radar projection image according to perspective principle and invariance assumption of adjacent depth; The hierarchical vision transformer backbone alternates the feature extraction of spatial dimension and channel dimension; RSA extracts the radar attention, then it fuses radar and camera features at the late stage. The experiment results on nuScenes dataset show that the accuracy of RCMixer exceeds all comparison networks and its detection ability of small objects in dark light is better than the camera-only method. In addition, the ablation study demonstrates the effectiveness of our method.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104367"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003237","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In real-world object detection applications, the camera would be affected by poor lighting conditions, resulting in a deteriorate performance. Millimeter-wave radar and camera have complementary advantages, radar point cloud can help detecting small objects under low light. In this study, we focus on feature-level fusion and propose a novel end-to-end detection network RCMixer. RCMixer mainly includes depth pillar expansion(DPE), hierarchical vision transformer and radar spatial attention (RSA) module. DPE enhances radar projection image according to perspective principle and invariance assumption of adjacent depth; The hierarchical vision transformer backbone alternates the feature extraction of spatial dimension and channel dimension; RSA extracts the radar attention, then it fuses radar and camera features at the late stage. The experiment results on nuScenes dataset show that the accuracy of RCMixer exceeds all comparison networks and its detection ability of small objects in dark light is better than the camera-only method. In addition, the ablation study demonstrates the effectiveness of our method.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.