Scale-invariant mask-guided vehicle keypoint detection from a monocular image

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sunpil Kim , Gang-Joon Yoon , Jinjoo Song , Sang Min Yoon
{"title":"Scale-invariant mask-guided vehicle keypoint detection from a monocular image","authors":"Sunpil Kim ,&nbsp;Gang-Joon Yoon ,&nbsp;Jinjoo Song ,&nbsp;Sang Min Yoon","doi":"10.1016/j.jvcir.2025.104397","DOIUrl":null,"url":null,"abstract":"<div><div>Intelligent vehicle detection and localization are important for autonomous driving systems, particularly traffic scene understanding. Robust vision-based vehicle localization directly affects the accuracy of self-driving systems but remains challenging to implement reliably due to differences in vehicle sizes, illumination changes, background clutter, and partial occlusion. Bottom-up-based vehicle detection using vehicle keypoint localization efficiently provides semantic information for partial occlusion and complex poses. However, bottom-up-based approaches still struggle to handle robust heatmap estimation from vehicles with scale variations and background ambiguities. This paper addresses the problem of predicting multiple vehicle locations by learning semantic vehicle keypoints using a multi-resolution feature extractor, an offset regression branch, and a heatmap regression branch network. The proposed pipeline estimates the vehicle keypoint by effectively eliminating similar background features using a mask-guided heatmap regression branch and emphasizing scale-adaptive heatmap features in the network. Quantitative and qualitative analyses, including ablation tests, verify that the proposed method is universally applicable, unlike previous approaches.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104397"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000112","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent vehicle detection and localization are important for autonomous driving systems, particularly traffic scene understanding. Robust vision-based vehicle localization directly affects the accuracy of self-driving systems but remains challenging to implement reliably due to differences in vehicle sizes, illumination changes, background clutter, and partial occlusion. Bottom-up-based vehicle detection using vehicle keypoint localization efficiently provides semantic information for partial occlusion and complex poses. However, bottom-up-based approaches still struggle to handle robust heatmap estimation from vehicles with scale variations and background ambiguities. This paper addresses the problem of predicting multiple vehicle locations by learning semantic vehicle keypoints using a multi-resolution feature extractor, an offset regression branch, and a heatmap regression branch network. The proposed pipeline estimates the vehicle keypoint by effectively eliminating similar background features using a mask-guided heatmap regression branch and emphasizing scale-adaptive heatmap features in the network. Quantitative and qualitative analyses, including ablation tests, verify that the proposed method is universally applicable, unlike previous approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信