Visual object tracking based on adaptive deblurring integrating motion blur perception

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lifan Sun , Baocheng Gong , Jianfeng Liu , Dan Gao
{"title":"Visual object tracking based on adaptive deblurring integrating motion blur perception","authors":"Lifan Sun ,&nbsp;Baocheng Gong ,&nbsp;Jianfeng Liu ,&nbsp;Dan Gao","doi":"10.1016/j.jvcir.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>Visual object tracking in motion-blurred scenes is crucial for applications such as traffic monitoring and navigation, including intelligent video surveillance, robotic vision navigation, and automated driving. Existing tracking algorithms primarily cater to sharp images, exhibiting significant performance degradation in motion-blurred scenes. Image degradation and decreased contrast resulting from motion blur compromise feature extraction quality. This paper proposes a visual object tracking algorithm, SiamADP, based on adaptive deblurring and integrating motion blur perception. First, the proposed algorithm employs a blur perception mechanism to detect whether the input image is severely blurred. After that, an effective motion blur removal network is used to generate blur-free images, facilitating rich and useful feature information extraction. Given the scarcity of motion blur datasets for object tracking evaluation, four test datasets are proposed: three synthetic datasets and a manually collected and labeled real motion blur dataset. Comparative experiments with existing trackers demonstrate the effectiveness and robustness of SiamADP in motion blur scenarios, validating its performance.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104388"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Visual object tracking in motion-blurred scenes is crucial for applications such as traffic monitoring and navigation, including intelligent video surveillance, robotic vision navigation, and automated driving. Existing tracking algorithms primarily cater to sharp images, exhibiting significant performance degradation in motion-blurred scenes. Image degradation and decreased contrast resulting from motion blur compromise feature extraction quality. This paper proposes a visual object tracking algorithm, SiamADP, based on adaptive deblurring and integrating motion blur perception. First, the proposed algorithm employs a blur perception mechanism to detect whether the input image is severely blurred. After that, an effective motion blur removal network is used to generate blur-free images, facilitating rich and useful feature information extraction. Given the scarcity of motion blur datasets for object tracking evaluation, four test datasets are proposed: three synthetic datasets and a manually collected and labeled real motion blur dataset. Comparative experiments with existing trackers demonstrate the effectiveness and robustness of SiamADP in motion blur scenarios, validating its performance.
基于融合运动模糊感知的自适应去模糊视觉目标跟踪
运动模糊场景中的视觉目标跟踪对于交通监控和导航等应用至关重要,包括智能视频监控、机器人视觉导航和自动驾驶。现有的跟踪算法主要是为了满足清晰的图像,在运动模糊的场景中表现出明显的性能下降。运动模糊导致的图像退化和对比度降低会影响特征提取的质量。提出了一种基于自适应去模糊和融合运动模糊感知的视觉目标跟踪算法SiamADP。首先,该算法采用模糊感知机制检测输入图像是否严重模糊。然后,利用有效的运动模糊去除网络生成无模糊图像,便于提取丰富有用的特征信息。考虑到运动模糊数据集在目标跟踪评估中的稀缺性,提出了四种测试数据集:三个合成数据集和一个手动收集和标记的真实运动模糊数据集。与现有跟踪器的对比实验证明了SiamADP在运动模糊场景下的有效性和鲁棒性,验证了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信