A lightweight gesture recognition network

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinzhao Guo, Xuemei Lei, Bo Li
{"title":"A lightweight gesture recognition network","authors":"Jinzhao Guo,&nbsp;Xuemei Lei,&nbsp;Bo Li","doi":"10.1016/j.jvcir.2024.104362","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the main human–computer interaction methods, gesture recognition has an urgent issue to be addressed, which huge paramaters and massive computation of the classification and recognition algorithm cause high cost in practical applications. To reduce cost and enhance the detection efficiency, a lightweight model of gesture recognition algorithms is proposed in this paper, based on the YOLOv5s framework. Firstly, we adopt ShuffleNetV2 as the backbone network to reduce the computational load and enhance the model’s detection speed. Additionally, lightweight modules such as GSConv and VoVGSCSP are introduced into the neck network to further compress the model size while maintaining accuracy. Furthermore, the BiFPN (Bi-directional Feature Pyramid Network) structure is incorporated to enhance the network’s detection accuracy at a lower computational cost. Lastly, we introduce the Coordinate Attention (CA) mechanism to enhance the network’s focus on key features. To investigate the rationale behind the introduction of the CA attention mechanism and the BiFPN network structure, we analyze the extracted features and validate the network’s attention on different parts of the feature maps through visualization. Experimental results demonstrate that the proposed algorithm achieves an average precision of 95.2% on the HD-HaGRID dataset. Compared to the original YOLOv5s model, the proposal model reduces the parameter count by 70.6% and the model size by 69.2%. Therefore, this model is suitable for real-time gesture recognition classification and detection, demonstrating significant potential for practical applications.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104362"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the main human–computer interaction methods, gesture recognition has an urgent issue to be addressed, which huge paramaters and massive computation of the classification and recognition algorithm cause high cost in practical applications. To reduce cost and enhance the detection efficiency, a lightweight model of gesture recognition algorithms is proposed in this paper, based on the YOLOv5s framework. Firstly, we adopt ShuffleNetV2 as the backbone network to reduce the computational load and enhance the model’s detection speed. Additionally, lightweight modules such as GSConv and VoVGSCSP are introduced into the neck network to further compress the model size while maintaining accuracy. Furthermore, the BiFPN (Bi-directional Feature Pyramid Network) structure is incorporated to enhance the network’s detection accuracy at a lower computational cost. Lastly, we introduce the Coordinate Attention (CA) mechanism to enhance the network’s focus on key features. To investigate the rationale behind the introduction of the CA attention mechanism and the BiFPN network structure, we analyze the extracted features and validate the network’s attention on different parts of the feature maps through visualization. Experimental results demonstrate that the proposed algorithm achieves an average precision of 95.2% on the HD-HaGRID dataset. Compared to the original YOLOv5s model, the proposal model reduces the parameter count by 70.6% and the model size by 69.2%. Therefore, this model is suitable for real-time gesture recognition classification and detection, demonstrating significant potential for practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信