Valter Estevam , Rayson Laroca , Helio Pedrini , David Menotti
{"title":"Dense video captioning using unsupervised semantic information","authors":"Valter Estevam , Rayson Laroca , Helio Pedrini , David Menotti","doi":"10.1016/j.jvcir.2024.104385","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events and that these simple events are shared across several complex events. We first employ a clustering method to group representations producing a visual codebook. Then, we learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries. This representation leverages the performance of the dense video captioning task in a scenario with only visual features. For example, we replace the audio signal in the BMT method and produce temporal proposals with comparable performance. Furthermore, we concatenate the visual representation with our descriptor in a vanilla transformer method to achieve state-of-the-art performance in the captioning subtask compared to the methods that explore only visual features, as well as a competitive performance with multi-modal methods. Our code is available at <span><span>https://github.com/valterlej/dvcusi</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104385"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003419","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events and that these simple events are shared across several complex events. We first employ a clustering method to group representations producing a visual codebook. Then, we learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries. This representation leverages the performance of the dense video captioning task in a scenario with only visual features. For example, we replace the audio signal in the BMT method and produce temporal proposals with comparable performance. Furthermore, we concatenate the visual representation with our descriptor in a vanilla transformer method to achieve state-of-the-art performance in the captioning subtask compared to the methods that explore only visual features, as well as a competitive performance with multi-modal methods. Our code is available at https://github.com/valterlej/dvcusi.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.