Along Han , Chao Liu , Qingyuan Wu, Ziyang Gong, Mengqi Liu, Bolong Xu , Xin Su
{"title":"External physical field-responsive nanocomposite hydrogels for wound healing applications","authors":"Along Han , Chao Liu , Qingyuan Wu, Ziyang Gong, Mengqi Liu, Bolong Xu , Xin Su","doi":"10.1016/j.adna.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels, as hydrophilic polymers with intricate 3D network structures, exhibit remarkable properties such as adhesion and moisture retention, promising broad applications in wound healing. However, the functionality of a single-component hydrogel system remains relatively simplistic, hindering the advancement towards the spatially and temporally controllable functionality of wound dressings. The incorporation of external physical field-responsive nanomaterials (EPFR-NMs) as composite components offers a viable pathway to modify hydrogels, and the strategies of integrating nanoparticles with hydrogels to create functional external physical field-responsive nanocomposite hydrogels (EPFR-NHs) have garnered significant interest among researchers. In this review, we comprehensively summarize the classification and acting mechanisms of EPFR-NMs, along with design strategies for their integration with hydrogels. Furthermore, we examine the detailed roles and mechanisms of EPFR-NHs in facilitating wound healing at various stages, providing direction and guiding principles for the design and clinical application of EPFR-NHs.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 32-58"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944524000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels, as hydrophilic polymers with intricate 3D network structures, exhibit remarkable properties such as adhesion and moisture retention, promising broad applications in wound healing. However, the functionality of a single-component hydrogel system remains relatively simplistic, hindering the advancement towards the spatially and temporally controllable functionality of wound dressings. The incorporation of external physical field-responsive nanomaterials (EPFR-NMs) as composite components offers a viable pathway to modify hydrogels, and the strategies of integrating nanoparticles with hydrogels to create functional external physical field-responsive nanocomposite hydrogels (EPFR-NHs) have garnered significant interest among researchers. In this review, we comprehensively summarize the classification and acting mechanisms of EPFR-NMs, along with design strategies for their integration with hydrogels. Furthermore, we examine the detailed roles and mechanisms of EPFR-NHs in facilitating wound healing at various stages, providing direction and guiding principles for the design and clinical application of EPFR-NHs.