External physical field-responsive nanocomposite hydrogels for wound healing applications

Along Han , Chao Liu , Qingyuan Wu, Ziyang Gong, Mengqi Liu, Bolong Xu , Xin Su
{"title":"External physical field-responsive nanocomposite hydrogels for wound healing applications","authors":"Along Han ,&nbsp;Chao Liu ,&nbsp;Qingyuan Wu,&nbsp;Ziyang Gong,&nbsp;Mengqi Liu,&nbsp;Bolong Xu ,&nbsp;Xin Su","doi":"10.1016/j.adna.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels, as hydrophilic polymers with intricate 3D network structures, exhibit remarkable properties such as adhesion and moisture retention, promising broad applications in wound healing. However, the functionality of a single-component hydrogel system remains relatively simplistic, hindering the advancement towards the spatially and temporally controllable functionality of wound dressings. The incorporation of external physical field-responsive nanomaterials (EPFR-NMs) as composite components offers a viable pathway to modify hydrogels, and the strategies of integrating nanoparticles with hydrogels to create functional external physical field-responsive nanocomposite hydrogels (EPFR-NHs) have garnered significant interest among researchers. In this review, we comprehensively summarize the classification and acting mechanisms of EPFR-NMs, along with design strategies for their integration with hydrogels. Furthermore, we examine the detailed roles and mechanisms of EPFR-NHs in facilitating wound healing at various stages, providing direction and guiding principles for the design and clinical application of EPFR-NHs.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 32-58"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944524000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels, as hydrophilic polymers with intricate 3D network structures, exhibit remarkable properties such as adhesion and moisture retention, promising broad applications in wound healing. However, the functionality of a single-component hydrogel system remains relatively simplistic, hindering the advancement towards the spatially and temporally controllable functionality of wound dressings. The incorporation of external physical field-responsive nanomaterials (EPFR-NMs) as composite components offers a viable pathway to modify hydrogels, and the strategies of integrating nanoparticles with hydrogels to create functional external physical field-responsive nanocomposite hydrogels (EPFR-NHs) have garnered significant interest among researchers. In this review, we comprehensively summarize the classification and acting mechanisms of EPFR-NMs, along with design strategies for their integration with hydrogels. Furthermore, we examine the detailed roles and mechanisms of EPFR-NHs in facilitating wound healing at various stages, providing direction and guiding principles for the design and clinical application of EPFR-NHs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信