DieT Transformer model with PCA-ADE integration for advanced multi-class brain tumor classification

Mohammad Amin , Khalid M.O. Nahar , Hasan Gharaibeh , Ahmad Nasayreh , Neda'a Alsalmanc , Alaa Alomar , Majd Malkawi , Noor Alqasem , Aseel Smerat , Raed Abu Zitar , Shawd Nusier , Absalom E. Ezugwu , Laith Abualigah
{"title":"DieT Transformer model with PCA-ADE integration for advanced multi-class brain tumor classification","authors":"Mohammad Amin ,&nbsp;Khalid M.O. Nahar ,&nbsp;Hasan Gharaibeh ,&nbsp;Ahmad Nasayreh ,&nbsp;Neda'a Alsalmanc ,&nbsp;Alaa Alomar ,&nbsp;Majd Malkawi ,&nbsp;Noor Alqasem ,&nbsp;Aseel Smerat ,&nbsp;Raed Abu Zitar ,&nbsp;Shawd Nusier ,&nbsp;Absalom E. Ezugwu ,&nbsp;Laith Abualigah","doi":"10.1016/j.ibmed.2024.100192","DOIUrl":null,"url":null,"abstract":"<div><div>Early and accurate diagnosis of brain tumors is crucial to improving patient outcomes and optimizing treatment strategies. Long-term brain injury results from aberrant proliferation of either malignant or nonmalignant tissues in the brain. MRIs, or magnetic resonance imaging, are one of the most used approaches for detecting brain tumors. Professionals physically evaluate people after they have had MRI filtering, the process of enhancing MRI scans for radiologist interpretation, to establish if they have a brain tumor. Because different specialists use different frames to make judgments on the same MRI image, their analyses may yield contradictory results. Furthermore, simply detecting a tumor is insufficient. Inconsistent diagnoses can lead to delays in treatment, impacting survival rates and quality of care. It is also crucial to diagnose the patient's tumor so that treatment can begin as soon as possible. In this research, we investigate the multi-class classification of brain tumors utilizing a cutting-edge methodology that includes feature extraction from pictures using the DieT Transformer model, dimensionality reduction with PCA, and feature selection using the ADE algorithm. The proposed model, known in the publication as ADE_DieT, obtained an accuracy of 96.09 %. In addition, this article analyzes the performance of various pre-trained models, including MobileNetV3, NasNet, ResNet50, VGG16, VGG19, and DeiT. The proposed approach shortens the time required for manual diagnosis by clinicians by assisting in the rapid and accurate identification of brain tumors using MRI data. In oncology, this is important since it allows for early treatment. Integrating ADE_DieT into clinical workflows can support radiologists by reducing diagnosis time and enhancing diagnostic consistency.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early and accurate diagnosis of brain tumors is crucial to improving patient outcomes and optimizing treatment strategies. Long-term brain injury results from aberrant proliferation of either malignant or nonmalignant tissues in the brain. MRIs, or magnetic resonance imaging, are one of the most used approaches for detecting brain tumors. Professionals physically evaluate people after they have had MRI filtering, the process of enhancing MRI scans for radiologist interpretation, to establish if they have a brain tumor. Because different specialists use different frames to make judgments on the same MRI image, their analyses may yield contradictory results. Furthermore, simply detecting a tumor is insufficient. Inconsistent diagnoses can lead to delays in treatment, impacting survival rates and quality of care. It is also crucial to diagnose the patient's tumor so that treatment can begin as soon as possible. In this research, we investigate the multi-class classification of brain tumors utilizing a cutting-edge methodology that includes feature extraction from pictures using the DieT Transformer model, dimensionality reduction with PCA, and feature selection using the ADE algorithm. The proposed model, known in the publication as ADE_DieT, obtained an accuracy of 96.09 %. In addition, this article analyzes the performance of various pre-trained models, including MobileNetV3, NasNet, ResNet50, VGG16, VGG19, and DeiT. The proposed approach shortens the time required for manual diagnosis by clinicians by assisting in the rapid and accurate identification of brain tumors using MRI data. In oncology, this is important since it allows for early treatment. Integrating ADE_DieT into clinical workflows can support radiologists by reducing diagnosis time and enhancing diagnostic consistency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信