Mohammad Amin , Khalid M.O. Nahar , Hasan Gharaibeh , Ahmad Nasayreh , Neda'a Alsalmanc , Alaa Alomar , Majd Malkawi , Noor Alqasem , Aseel Smerat , Raed Abu Zitar , Shawd Nusier , Absalom E. Ezugwu , Laith Abualigah
{"title":"DieT Transformer model with PCA-ADE integration for advanced multi-class brain tumor classification","authors":"Mohammad Amin , Khalid M.O. Nahar , Hasan Gharaibeh , Ahmad Nasayreh , Neda'a Alsalmanc , Alaa Alomar , Majd Malkawi , Noor Alqasem , Aseel Smerat , Raed Abu Zitar , Shawd Nusier , Absalom E. Ezugwu , Laith Abualigah","doi":"10.1016/j.ibmed.2024.100192","DOIUrl":null,"url":null,"abstract":"<div><div>Early and accurate diagnosis of brain tumors is crucial to improving patient outcomes and optimizing treatment strategies. Long-term brain injury results from aberrant proliferation of either malignant or nonmalignant tissues in the brain. MRIs, or magnetic resonance imaging, are one of the most used approaches for detecting brain tumors. Professionals physically evaluate people after they have had MRI filtering, the process of enhancing MRI scans for radiologist interpretation, to establish if they have a brain tumor. Because different specialists use different frames to make judgments on the same MRI image, their analyses may yield contradictory results. Furthermore, simply detecting a tumor is insufficient. Inconsistent diagnoses can lead to delays in treatment, impacting survival rates and quality of care. It is also crucial to diagnose the patient's tumor so that treatment can begin as soon as possible. In this research, we investigate the multi-class classification of brain tumors utilizing a cutting-edge methodology that includes feature extraction from pictures using the DieT Transformer model, dimensionality reduction with PCA, and feature selection using the ADE algorithm. The proposed model, known in the publication as ADE_DieT, obtained an accuracy of 96.09 %. In addition, this article analyzes the performance of various pre-trained models, including MobileNetV3, NasNet, ResNet50, VGG16, VGG19, and DeiT. The proposed approach shortens the time required for manual diagnosis by clinicians by assisting in the rapid and accurate identification of brain tumors using MRI data. In oncology, this is important since it allows for early treatment. Integrating ADE_DieT into clinical workflows can support radiologists by reducing diagnosis time and enhancing diagnostic consistency.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Early and accurate diagnosis of brain tumors is crucial to improving patient outcomes and optimizing treatment strategies. Long-term brain injury results from aberrant proliferation of either malignant or nonmalignant tissues in the brain. MRIs, or magnetic resonance imaging, are one of the most used approaches for detecting brain tumors. Professionals physically evaluate people after they have had MRI filtering, the process of enhancing MRI scans for radiologist interpretation, to establish if they have a brain tumor. Because different specialists use different frames to make judgments on the same MRI image, their analyses may yield contradictory results. Furthermore, simply detecting a tumor is insufficient. Inconsistent diagnoses can lead to delays in treatment, impacting survival rates and quality of care. It is also crucial to diagnose the patient's tumor so that treatment can begin as soon as possible. In this research, we investigate the multi-class classification of brain tumors utilizing a cutting-edge methodology that includes feature extraction from pictures using the DieT Transformer model, dimensionality reduction with PCA, and feature selection using the ADE algorithm. The proposed model, known in the publication as ADE_DieT, obtained an accuracy of 96.09 %. In addition, this article analyzes the performance of various pre-trained models, including MobileNetV3, NasNet, ResNet50, VGG16, VGG19, and DeiT. The proposed approach shortens the time required for manual diagnosis by clinicians by assisting in the rapid and accurate identification of brain tumors using MRI data. In oncology, this is important since it allows for early treatment. Integrating ADE_DieT into clinical workflows can support radiologists by reducing diagnosis time and enhancing diagnostic consistency.