Deep learning-based approach to diagnose lung cancer using CT-scan images

Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan
{"title":"Deep learning-based approach to diagnose lung cancer using CT-scan images","authors":"Mohammad Q. Shatnawi,&nbsp;Qusai Abuein,&nbsp;Romesaa Al-Quraan","doi":"10.1016/j.ibmed.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信