Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan
{"title":"Deep learning-based approach to diagnose lung cancer using CT-scan images","authors":"Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan","doi":"10.1016/j.ibmed.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.