A neonatal sepsis prediction algorithm using electronic medical record data from Mbarara Regional Referral Hospital

Peace Ezeobi Dennis , Angella Musiimenta , William Wasswa , Stella Kyoyagala
{"title":"A neonatal sepsis prediction algorithm using electronic medical record data from Mbarara Regional Referral Hospital","authors":"Peace Ezeobi Dennis ,&nbsp;Angella Musiimenta ,&nbsp;William Wasswa ,&nbsp;Stella Kyoyagala","doi":"10.1016/j.ibmed.2025.100198","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Neonatal sepsis is a global challenge that contributes significantly to neonatal morbidity and mortality. The current diagnostic methods depend on conventional culture methods, a procedure that takes time and leads to delays in making timely treatment decisions. This study proposes a machine learning algorithm utilizing electronic medical record (EMR) data from Mbarara Regional Referral Hospital (MRRH) to enhance early detection and treatment of neonatal sepsis.</div></div><div><h3>Methods</h3><div>We performed a retrospective study on a dataset of neonates hospitalized for at least 48 h in the Neonatal Intensive Care Unit (NICU) at MRRH between October 2015 to September 2019 who received at least one sepsis evaluation. 482 records of neonates met the inclusion criteria and the dataset comprises 38 neonatal sepsis screening parameters. The study considered two outcomes for sepsis evaluations: culture-positive if a blood culture was positive, and clinically positive if cultures were negative but antibiotics were administered for at least 120 h. We implemented k-fold cross-validation with k set to 10 to guarantee robust training and testing of the models. Seven machine learning models were trained to classify inputs as sepsis positive or negative, and their performance was compared with physician diagnoses.</div></div><div><h3>Results</h3><div>The results of this study show that the proposed algorithm, combining maternal risk factors, neonatal clinical signs, and laboratory tests (the algorithm demonstrated a sensitivity and specificity of at least 95 %) outperformed the physician diagnosis (Sensitivity = 89 %, Specificity = 11 %). SVM model with radial basis function, polynomial kernels, and DT model (with the highest AUROC values of 98 %) performed better than the other models.</div></div><div><h3>Conclusions</h3><div>The study shows that the combination of maternal risk factors, neonatal clinical signs, and laboratory tests can help improve the prediction of neonatal sepsis. Further research is warranted to assess the potential performance improvements and clinical efficacy in a prospective trial.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100198"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Neonatal sepsis is a global challenge that contributes significantly to neonatal morbidity and mortality. The current diagnostic methods depend on conventional culture methods, a procedure that takes time and leads to delays in making timely treatment decisions. This study proposes a machine learning algorithm utilizing electronic medical record (EMR) data from Mbarara Regional Referral Hospital (MRRH) to enhance early detection and treatment of neonatal sepsis.

Methods

We performed a retrospective study on a dataset of neonates hospitalized for at least 48 h in the Neonatal Intensive Care Unit (NICU) at MRRH between October 2015 to September 2019 who received at least one sepsis evaluation. 482 records of neonates met the inclusion criteria and the dataset comprises 38 neonatal sepsis screening parameters. The study considered two outcomes for sepsis evaluations: culture-positive if a blood culture was positive, and clinically positive if cultures were negative but antibiotics were administered for at least 120 h. We implemented k-fold cross-validation with k set to 10 to guarantee robust training and testing of the models. Seven machine learning models were trained to classify inputs as sepsis positive or negative, and their performance was compared with physician diagnoses.

Results

The results of this study show that the proposed algorithm, combining maternal risk factors, neonatal clinical signs, and laboratory tests (the algorithm demonstrated a sensitivity and specificity of at least 95 %) outperformed the physician diagnosis (Sensitivity = 89 %, Specificity = 11 %). SVM model with radial basis function, polynomial kernels, and DT model (with the highest AUROC values of 98 %) performed better than the other models.

Conclusions

The study shows that the combination of maternal risk factors, neonatal clinical signs, and laboratory tests can help improve the prediction of neonatal sepsis. Further research is warranted to assess the potential performance improvements and clinical efficacy in a prospective trial.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信