A robust deep learning algorithm for lung cancer detection from computed tomography images

A.A. Abe , M. Nyathi , A.A. Okunade , W. Pilloy , B. Kgole , N. Nyakale
{"title":"A robust deep learning algorithm for lung cancer detection from computed tomography images","authors":"A.A. Abe ,&nbsp;M. Nyathi ,&nbsp;A.A. Okunade ,&nbsp;W. Pilloy ,&nbsp;B. Kgole ,&nbsp;N. Nyakale","doi":"10.1016/j.ibmed.2025.100203","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting lung cancer at its earliest stage offers the best possibility for a cure. Chest computed tomography (CT) scans are a valuable tool for early diagnosis. However, the initial stages of lung cancer may present patterns in the images that are not easily detectable by radiologist, potentially leading to misdiagnosis. Although automated approaches using deep learning (DL) algorithms have been proposed, it depends on a substantial amount of data to achieve diagnostic accuracy comparable to that of radiologists. To alleviate this challenge, this study proposes a DL algorithm that uses an ensemble of convolutional neural networks and trained on relatively small dataset (IQ_OTH/NCCD dataset) to automate lung cancer diagnosis from patient chest CT scans. The method achieved an accuracy of 98.17 %, a sensitivity of 98.21 %, and a specificity of 98.13 % when categorizing scans as either cancerous or non-cancerous. Similarly, it achieved an accuracy of 95.43 %, a sensitivity of 93.40 %, and a specificity of 97.09 % when classifying scans as normal or containing benign or malignant pulmonary nodules. These results demonstrate superior performance compared to previously proposed models, highlighting the effectiveness of DL algorithms for early lung cancer diagnosis and providing a valuable tool to assist radiologists in their assesments.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100203"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting lung cancer at its earliest stage offers the best possibility for a cure. Chest computed tomography (CT) scans are a valuable tool for early diagnosis. However, the initial stages of lung cancer may present patterns in the images that are not easily detectable by radiologist, potentially leading to misdiagnosis. Although automated approaches using deep learning (DL) algorithms have been proposed, it depends on a substantial amount of data to achieve diagnostic accuracy comparable to that of radiologists. To alleviate this challenge, this study proposes a DL algorithm that uses an ensemble of convolutional neural networks and trained on relatively small dataset (IQ_OTH/NCCD dataset) to automate lung cancer diagnosis from patient chest CT scans. The method achieved an accuracy of 98.17 %, a sensitivity of 98.21 %, and a specificity of 98.13 % when categorizing scans as either cancerous or non-cancerous. Similarly, it achieved an accuracy of 95.43 %, a sensitivity of 93.40 %, and a specificity of 97.09 % when classifying scans as normal or containing benign or malignant pulmonary nodules. These results demonstrate superior performance compared to previously proposed models, highlighting the effectiveness of DL algorithms for early lung cancer diagnosis and providing a valuable tool to assist radiologists in their assesments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信