Automatic glioma segmentation based on efficient U-net model using MRI images

Yessine Amri , Amine Ben Slama , Zouhair Mbarki , Ridha Selmi , Hedi Trabelsi
{"title":"Automatic glioma segmentation based on efficient U-net model using MRI images","authors":"Yessine Amri ,&nbsp;Amine Ben Slama ,&nbsp;Zouhair Mbarki ,&nbsp;Ridha Selmi ,&nbsp;Hedi Trabelsi","doi":"10.1016/j.ibmed.2025.100216","DOIUrl":null,"url":null,"abstract":"<div><div>Gliomas are among the most aggressive and challenging brain tumors to diagnose and treat. Accurate segmentation of glioma regions in Magnetic Resonance Imaging (MRI) is essential for early diagnosis and effective treatment planning. This study proposes an optimized U-Net model tailored for glioma segmentation, addressing key challenges such as boundary delineation, computational efficiency, and generalizability. The proposed model integrates streamlined encoder-decoder pathways and optimized skip connections, achieving precise segmentation while reducing computational complexity. The model was validated on two datasets: TCGA-TCIA, containing 110 patients, and the multi-modal BraTS 2021 dataset. Comparative evaluations were conducted against state-of-the-art methods, including Attention U-Net, Trans-U-Net, DeepLabV3+, and 3D U-Net, using metrics such as Dice Coefficient, Intersection over Union (IoU), Hausdorff Distance (HD), and Structural Similarity Index (SSIM). The proposed U-Net achieved the highest performance across all metrics, with a Dice score of 92.54 %, IoU of 90.42 %, HD of 4.12 mm, and SSIM of 0.962 on the TCGA-TCIA dataset. On the BraTS dataset, it achieved comparable results, with a Dice score of 91.32 % and an IoU of 89.56 %. In contrast, other methods, such as Attention U-Net and DeepLabV3+, showed lower Dice scores of 85.62 % and 84.10 %, respectively, and higher HD values, indicating inferior boundary delineation. Additionally, the proposed model demonstrated computational efficiency, processing images in 1.5 s on average, compared to 5.0 s for Attention U-Net and 9.0 s for Trans-U-Net. These results underscore the potential of the optimized U-Net as a robust, accurate, and efficient tool for glioma segmentation. Future work will focus on clinical validation and extending the model to include automated glioma grading, further enhancing its applicability in medical imaging workflows.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100216"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gliomas are among the most aggressive and challenging brain tumors to diagnose and treat. Accurate segmentation of glioma regions in Magnetic Resonance Imaging (MRI) is essential for early diagnosis and effective treatment planning. This study proposes an optimized U-Net model tailored for glioma segmentation, addressing key challenges such as boundary delineation, computational efficiency, and generalizability. The proposed model integrates streamlined encoder-decoder pathways and optimized skip connections, achieving precise segmentation while reducing computational complexity. The model was validated on two datasets: TCGA-TCIA, containing 110 patients, and the multi-modal BraTS 2021 dataset. Comparative evaluations were conducted against state-of-the-art methods, including Attention U-Net, Trans-U-Net, DeepLabV3+, and 3D U-Net, using metrics such as Dice Coefficient, Intersection over Union (IoU), Hausdorff Distance (HD), and Structural Similarity Index (SSIM). The proposed U-Net achieved the highest performance across all metrics, with a Dice score of 92.54 %, IoU of 90.42 %, HD of 4.12 mm, and SSIM of 0.962 on the TCGA-TCIA dataset. On the BraTS dataset, it achieved comparable results, with a Dice score of 91.32 % and an IoU of 89.56 %. In contrast, other methods, such as Attention U-Net and DeepLabV3+, showed lower Dice scores of 85.62 % and 84.10 %, respectively, and higher HD values, indicating inferior boundary delineation. Additionally, the proposed model demonstrated computational efficiency, processing images in 1.5 s on average, compared to 5.0 s for Attention U-Net and 9.0 s for Trans-U-Net. These results underscore the potential of the optimized U-Net as a robust, accurate, and efficient tool for glioma segmentation. Future work will focus on clinical validation and extending the model to include automated glioma grading, further enhancing its applicability in medical imaging workflows.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信