Fuzzy based system for coronary artery disease prediction using subtractive clustering and risk factors data

Abdeljalil El-Ibrahimi , Othmane Daanouni , Zakaria Alouani , Oussama El Gannour , Shawki Saleh , Bouchaib Cherradi , Omar Bouattane
{"title":"Fuzzy based system for coronary artery disease prediction using subtractive clustering and risk factors data","authors":"Abdeljalil El-Ibrahimi ,&nbsp;Othmane Daanouni ,&nbsp;Zakaria Alouani ,&nbsp;Oussama El Gannour ,&nbsp;Shawki Saleh ,&nbsp;Bouchaib Cherradi ,&nbsp;Omar Bouattane","doi":"10.1016/j.ibmed.2025.100208","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past three decades, coronary artery disease (CAD) has been considered one of the most common fatal diseases worldwide. Consequently, early diagnosis and prediction are essential, as they can significantly reduce patient mortality and treatment costs. This study aims to design an automatic expert system using fuzzy logic theory to predict CAD. Thus, aiding physicians to identify diseases at an early stage and assess their severity. This system generates fuzzy rules automatically from training dataset through a subtractive clustering method and employs the Sugeno Fuzzy Inference Engine to produce an output indicating the patient's condition. Feature selection is performed using filter methods such as variance analysis, Mutual Information, and Pearson's Correlation Coefficient to identify the most relevant factors affecting heart disease. The implementation is conducted on publicly available UCI heart disease datasets, and the system's performance is evaluated based on accuracy, specificity, and sensitivity metrics. The findings indicate a classification accuracy of 99.61 %, achieving a sensitivity rate of 100 % and a specificity rate of 99.20 %. These findings highlight the system's potential as an effective diagnostic and early prevention tool, ultimately improving clinical outcomes in CAD treatment.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100208"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past three decades, coronary artery disease (CAD) has been considered one of the most common fatal diseases worldwide. Consequently, early diagnosis and prediction are essential, as they can significantly reduce patient mortality and treatment costs. This study aims to design an automatic expert system using fuzzy logic theory to predict CAD. Thus, aiding physicians to identify diseases at an early stage and assess their severity. This system generates fuzzy rules automatically from training dataset through a subtractive clustering method and employs the Sugeno Fuzzy Inference Engine to produce an output indicating the patient's condition. Feature selection is performed using filter methods such as variance analysis, Mutual Information, and Pearson's Correlation Coefficient to identify the most relevant factors affecting heart disease. The implementation is conducted on publicly available UCI heart disease datasets, and the system's performance is evaluated based on accuracy, specificity, and sensitivity metrics. The findings indicate a classification accuracy of 99.61 %, achieving a sensitivity rate of 100 % and a specificity rate of 99.20 %. These findings highlight the system's potential as an effective diagnostic and early prevention tool, ultimately improving clinical outcomes in CAD treatment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信