Analyzing urban public sports facilities for recognition and optimization using intelligent image processing

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhongqian Zhang
{"title":"Analyzing urban public sports facilities for recognition and optimization using intelligent image processing","authors":"Zhongqian Zhang","doi":"10.1016/j.eij.2024.100604","DOIUrl":null,"url":null,"abstract":"<div><div>Quality of urban public sports facilities has an implication for increasing sports satisfaction levels in individuals and for developing a better way of life in cities. The current study aims to assess and improve urban public sports services through intelligent image processing techniques for assessing sports facilities. The method incorporates an optimized Residual-Shuffle Network modified by a boosted variant of Spring Search Algorithm (BSSA) for efficient image recognition along with metaheuristics and super-efficiency data envelopment analysis (SE-DEA) model. The images captured systematically using photographic equipment identify such key information as facility usage, viewer demographics, and activity levels by deep learning algorithms. Sports facilities’ effectiveness evaluation for improvement and optimization has been done using metaheuristics and SE-DEA model. The model has been verified with other modern methods, including Faster R-CNN and Convolutional Neural Network (CNN). The results indicate that the SE-DEA model with an accuracy of 94.76% in recognizing sports facilities, outperforming advanced comparative models like Faster R-CNN (74.21%) and CNN (60.54%). The mean execution time of SE-DEA is 5.6 s, which is slower than Faster R-CNN (4.13 s) but faster than CNN (10.98 s). Also, the SE-DEA model provides a significant reduction in costs, with a public service fee of 1200 (compared to 3200 for traditional public services) and a facility maintenance cost of 1000 (compared to 2500 for traditional public services).</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"29 ","pages":"Article 100604"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001671","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Quality of urban public sports facilities has an implication for increasing sports satisfaction levels in individuals and for developing a better way of life in cities. The current study aims to assess and improve urban public sports services through intelligent image processing techniques for assessing sports facilities. The method incorporates an optimized Residual-Shuffle Network modified by a boosted variant of Spring Search Algorithm (BSSA) for efficient image recognition along with metaheuristics and super-efficiency data envelopment analysis (SE-DEA) model. The images captured systematically using photographic equipment identify such key information as facility usage, viewer demographics, and activity levels by deep learning algorithms. Sports facilities’ effectiveness evaluation for improvement and optimization has been done using metaheuristics and SE-DEA model. The model has been verified with other modern methods, including Faster R-CNN and Convolutional Neural Network (CNN). The results indicate that the SE-DEA model with an accuracy of 94.76% in recognizing sports facilities, outperforming advanced comparative models like Faster R-CNN (74.21%) and CNN (60.54%). The mean execution time of SE-DEA is 5.6 s, which is slower than Faster R-CNN (4.13 s) but faster than CNN (10.98 s). Also, the SE-DEA model provides a significant reduction in costs, with a public service fee of 1200 (compared to 3200 for traditional public services) and a facility maintenance cost of 1000 (compared to 2500 for traditional public services).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信