Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer's disease classification

Mohamed Amine Mahjoubi , Driss Lamrani , Shawki Saleh , Wassima Moutaouakil , Asmae Ouhmida , Soufiane Hamida , Bouchaib Cherradi , Abdelhadi Raihani
{"title":"Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer's disease classification","authors":"Mohamed Amine Mahjoubi ,&nbsp;Driss Lamrani ,&nbsp;Shawki Saleh ,&nbsp;Wassima Moutaouakil ,&nbsp;Asmae Ouhmida ,&nbsp;Soufiane Hamida ,&nbsp;Bouchaib Cherradi ,&nbsp;Abdelhadi Raihani","doi":"10.1016/j.ibmed.2025.100219","DOIUrl":null,"url":null,"abstract":"<div><div>The field of optimization is focused on the formulation, analysis, and resolution of problems involving the minimization or maximization of functions. A particular subclass of optimization problems, known as empirical risk minimization, involves fitting a model to observed data. These problems play a central role in various areas such as machine learning, statistical modeling, and decision theory, where the objective is to find a model that best approximates underlying patterns in the data by minimizing a specified loss or risk function. In deep learning (DL) systems, various optimization algorithms are utilized with the gradient descent (GD) algorithm being one of the most significant and effective. Research studies have improved the GD algorithm and developed various successful variants, including stochastic gradient descent (SGD) with momentum, AdaGrad, RMSProp, and Adam. This article provides a comparative analysis of these stochastic gradient descent algorithms based on their accuracy, loss, and training time, as well as the loss of each algorithm in generating an optimization solution. Experiments were conducted using Transfer Learning (TL) technique based on the pre-trained ResNet50 base model for image classification, with a focus on stochastic gradient (SG) for performances optimization. The case study in this work is based on a data extract from the Alzheimer's image dataset, which contains four classes such as Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented. The obtained results with the Adam and SGD momentum optimizers achieved the highest accuracy of 97.66 % and 97.58 %, respectively.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100219"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of optimization is focused on the formulation, analysis, and resolution of problems involving the minimization or maximization of functions. A particular subclass of optimization problems, known as empirical risk minimization, involves fitting a model to observed data. These problems play a central role in various areas such as machine learning, statistical modeling, and decision theory, where the objective is to find a model that best approximates underlying patterns in the data by minimizing a specified loss or risk function. In deep learning (DL) systems, various optimization algorithms are utilized with the gradient descent (GD) algorithm being one of the most significant and effective. Research studies have improved the GD algorithm and developed various successful variants, including stochastic gradient descent (SGD) with momentum, AdaGrad, RMSProp, and Adam. This article provides a comparative analysis of these stochastic gradient descent algorithms based on their accuracy, loss, and training time, as well as the loss of each algorithm in generating an optimization solution. Experiments were conducted using Transfer Learning (TL) technique based on the pre-trained ResNet50 base model for image classification, with a focus on stochastic gradient (SG) for performances optimization. The case study in this work is based on a data extract from the Alzheimer's image dataset, which contains four classes such as Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented. The obtained results with the Adam and SGD momentum optimizers achieved the highest accuracy of 97.66 % and 97.58 %, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信