Open-source small language models for personal medical assistant chatbots

Matteo Magnini , Gianluca Aguzzi , Sara Montagna
{"title":"Open-source small language models for personal medical assistant chatbots","authors":"Matteo Magnini ,&nbsp;Gianluca Aguzzi ,&nbsp;Sara Montagna","doi":"10.1016/j.ibmed.2024.100197","DOIUrl":null,"url":null,"abstract":"<div><div>Medical chatbots are becoming essential components of telemedicine applications as tools to assist patients in the self-management of their conditions. This trend is particularly driven by advancements in natural language processing techniques with pre-trained language models (LMs). However, the integration of LMs into clinical environments faces challenges related to reliability and privacy concerns.</div><div>This study seeks to address these issues by exploiting a <em>privacy by design</em> architectural solution that utilises the fully local deployment of open-source LMs. Specifically, to mitigate any risk of information leakage, we focus on evaluating the performance of open-source language models (SLMs) that can be deployed on personal devices, such as smartphones or laptops, without stringent hardware requirements.</div><div>We assess the effectiveness of this solution adopting hypertension management as a case study. Models are evaluated across various tasks, including intent recognition and empathetic conversation, using Gemini Pro 1.5 as a benchmark. The results indicate that, for certain tasks such as intent recognition, Gemini outperforms other models. However, by employing the “large language model (LLM) as a judge” approach for semantic evaluation of response correctness, we found several models that demonstrate a close alignment with the ground truth. In conclusion, this study highlights the potential of locally deployed SLMs as components of medical chatbots, while addressing critical concerns related to privacy and reliability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical chatbots are becoming essential components of telemedicine applications as tools to assist patients in the self-management of their conditions. This trend is particularly driven by advancements in natural language processing techniques with pre-trained language models (LMs). However, the integration of LMs into clinical environments faces challenges related to reliability and privacy concerns.
This study seeks to address these issues by exploiting a privacy by design architectural solution that utilises the fully local deployment of open-source LMs. Specifically, to mitigate any risk of information leakage, we focus on evaluating the performance of open-source language models (SLMs) that can be deployed on personal devices, such as smartphones or laptops, without stringent hardware requirements.
We assess the effectiveness of this solution adopting hypertension management as a case study. Models are evaluated across various tasks, including intent recognition and empathetic conversation, using Gemini Pro 1.5 as a benchmark. The results indicate that, for certain tasks such as intent recognition, Gemini outperforms other models. However, by employing the “large language model (LLM) as a judge” approach for semantic evaluation of response correctness, we found several models that demonstrate a close alignment with the ground truth. In conclusion, this study highlights the potential of locally deployed SLMs as components of medical chatbots, while addressing critical concerns related to privacy and reliability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信