Integrated modeling of boron powder injection for real-time plasma-facing component conditioning

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY
F. Effenberg , K. Schmid , F. Nespoli , A. Bortolon , Y. Feng , B.A. Grierson , J.D. Lore , R. Maingi , D.L. Rudakov
{"title":"Integrated modeling of boron powder injection for real-time plasma-facing component conditioning","authors":"F. Effenberg ,&nbsp;K. Schmid ,&nbsp;F. Nespoli ,&nbsp;A. Bortolon ,&nbsp;Y. Feng ,&nbsp;B.A. Grierson ,&nbsp;J.D. Lore ,&nbsp;R. Maingi ,&nbsp;D.L. Rudakov","doi":"10.1016/j.nme.2024.101832","DOIUrl":null,"url":null,"abstract":"<div><div>An integrated modeling framework for investigating the application of solid boron (B) powder injection for real-time surface conditioning of plasma-facing components (PFCs) in tokamak environments is presented. Utilizing the DIII-D impurity powder dropper (IPD) setup, this study simulates B powder injection scenarios ranging from milligrams to tens of milligrams per second, corresponding to boron flux rates of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup><mtext>–</mtext><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>21</mn></mrow></msup></mrow></math></span> B/s in standard L-mode conditions. The comprehensive modeling approach combines EMC3-EIRENE for simulating the deuterium plasma background and the Dust Injection Simulator (DIS) for the ablation and transport of the boron powder particles. EMC3 trace impurity fluid modeling results show substantial boron transport to the inboard lower divertor, predominantly influenced by the main ion plasma flow. The dependency on powder particle size (5–<span><math><mrow><mn>250</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) was found to be insignificant for the scenario considered. The effects of erosion and redeposition were considered to reconcile the discrepancies with experimental observations, which saw substantial deposition on the outer divertor plasma-facing components. For this purpose, the WallDYN3D code was updated to include boron sources within the plasma domain and integrated into the modeling framework. The mixed-material migration modeling shows evolving boron deposition patterns, suggesting the formation of mixed B-C layers or predominantly B coverage depending on the powder mass flow rate. While the modeling outcomes at lower B injection rates tend to align with DIII-D experimental observations, the prediction of near-pure boron layers at higher rates has yet to be experimentally verified in the carbon environment of the DIII-D tokamak. The extensive reach of boron layers found in the modeling suggests the need for modeling that encompasses the entire wall geometry for more accurate experimental correlations. This integrated approach sets a precedent for analyzing and applying real-time in-situ boron coating techniques in advanced tokamak scenarios, potentially extendable to ITER.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"42 ","pages":"Article 101832"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002552","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An integrated modeling framework for investigating the application of solid boron (B) powder injection for real-time surface conditioning of plasma-facing components (PFCs) in tokamak environments is presented. Utilizing the DIII-D impurity powder dropper (IPD) setup, this study simulates B powder injection scenarios ranging from milligrams to tens of milligrams per second, corresponding to boron flux rates of 10201021 B/s in standard L-mode conditions. The comprehensive modeling approach combines EMC3-EIRENE for simulating the deuterium plasma background and the Dust Injection Simulator (DIS) for the ablation and transport of the boron powder particles. EMC3 trace impurity fluid modeling results show substantial boron transport to the inboard lower divertor, predominantly influenced by the main ion plasma flow. The dependency on powder particle size (5–250μm) was found to be insignificant for the scenario considered. The effects of erosion and redeposition were considered to reconcile the discrepancies with experimental observations, which saw substantial deposition on the outer divertor plasma-facing components. For this purpose, the WallDYN3D code was updated to include boron sources within the plasma domain and integrated into the modeling framework. The mixed-material migration modeling shows evolving boron deposition patterns, suggesting the formation of mixed B-C layers or predominantly B coverage depending on the powder mass flow rate. While the modeling outcomes at lower B injection rates tend to align with DIII-D experimental observations, the prediction of near-pure boron layers at higher rates has yet to be experimentally verified in the carbon environment of the DIII-D tokamak. The extensive reach of boron layers found in the modeling suggests the need for modeling that encompasses the entire wall geometry for more accurate experimental correlations. This integrated approach sets a precedent for analyzing and applying real-time in-situ boron coating techniques in advanced tokamak scenarios, potentially extendable to ITER.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信