{"title":"Semantic-aware representations for unsupervised Camouflaged Object Detection","authors":"Zelin Lu, Xing Zhao, Liang Xie, Haoran Liang, Ronghua Liang","doi":"10.1016/j.jvcir.2024.104366","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised image segmentation algorithms face challenges due to the lack of human annotations. They typically employ representations derived from self-supervised models to generate pseudo-labels for supervising model training. Using this strategy, the model’s performance largely depends on the quality of the generated pseudo-labels. In this study, we design an unsupervised framework to perform COD (Camouflaged Object Detection) without the need for generating pseudo-labels. Specifically, we utilize semantic-aware representations, trained in a self-supervised manner on large-scale unlabeled datasets, to guide the training process. These representations not only capturing rich contextual semantic information but also assist in refining the blurred boundaries of camouflaged objects. Furthermore, we design a framework that integrates these semantic-aware representations with task-specific features, enabling the model to perform the UCOD (Unsupervised Camouflaged Object Detection) task with enhanced contextual understanding. Moreover, we introduce an innovative multi-scale token loss function, which maintain the structural integrity of objects at various scales in the model’s predictions through mutual supervision between different features and scales. Extensive experimental validation demonstrates that our model significantly enhances the performance of UCOD, closely approaching the capabilities of state-of-the-art weakly-supervised COD models.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104366"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324003225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised image segmentation algorithms face challenges due to the lack of human annotations. They typically employ representations derived from self-supervised models to generate pseudo-labels for supervising model training. Using this strategy, the model’s performance largely depends on the quality of the generated pseudo-labels. In this study, we design an unsupervised framework to perform COD (Camouflaged Object Detection) without the need for generating pseudo-labels. Specifically, we utilize semantic-aware representations, trained in a self-supervised manner on large-scale unlabeled datasets, to guide the training process. These representations not only capturing rich contextual semantic information but also assist in refining the blurred boundaries of camouflaged objects. Furthermore, we design a framework that integrates these semantic-aware representations with task-specific features, enabling the model to perform the UCOD (Unsupervised Camouflaged Object Detection) task with enhanced contextual understanding. Moreover, we introduce an innovative multi-scale token loss function, which maintain the structural integrity of objects at various scales in the model’s predictions through mutual supervision between different features and scales. Extensive experimental validation demonstrates that our model significantly enhances the performance of UCOD, closely approaching the capabilities of state-of-the-art weakly-supervised COD models.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.