Wall conditions on HL-2A and HL-3 tokamaks

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Chengzhi Cao, Xiangmei Huang, Yi Hu, Yanfeng Xie, Jun Zhou, Tao Qiao, Jinming Gao, Laizhong Cai, Zeng Cao, HL-2A and HL-3 team
{"title":"Wall conditions on HL-2A and HL-3 tokamaks","authors":"Chengzhi Cao,&nbsp;Xiangmei Huang,&nbsp;Yi Hu,&nbsp;Yanfeng Xie,&nbsp;Jun Zhou,&nbsp;Tao Qiao,&nbsp;Jinming Gao,&nbsp;Laizhong Cai,&nbsp;Zeng Cao,&nbsp;HL-2A and HL-3 team","doi":"10.1016/j.nme.2024.101852","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the wall conditioning of HL-2A and HL-3 tokamaks. It details the enhancement of plasma performance achieved through siliconization processes on the HL-2A tokamak, encompassing both offline and in-situ methodologies. A study on the impact of offline siliconization on impurity concentration within HL-2A is presented, and real-time siliconization results demonstrate that it has no effect on plasma discharge. The findings indicate that in-situ siliconization is equally effective as the offline process with regard to plasma performance. With appropriate 13.56 MHz radio frequency (RF) power and pressure, a uniform glow discharge was achieved under 0.1 T in HL-2A. The effectiveness of impurity removal on HL-3 at different baking temperatures has been investigated. Measurements of glow discharge plasma density and temperature reveal that the parameters farthest from the electrode are 6 eV and ∼ 8 × 10<sup>12</sup> m<sup>−3</sup>. Based on the breakdown tests, it was determined that the minimum breakdown voltage is approximate 430 V, and the lowest breakdown pressure is around 2.1 × 10<sup>-2</sup> Pa when using 2.1 MHz RF power. Furthermore, experiments were conducted to investigate the efficiency of radio frequency assisted glow discharge cleaning for impurity removal. The study also evaluated the effectiveness of various methods for removing impurities. Additionally, siliconization on HL-3 was implemented successfully with determination of all key control parameters.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"42 ","pages":"Article 101852"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002758","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the wall conditioning of HL-2A and HL-3 tokamaks. It details the enhancement of plasma performance achieved through siliconization processes on the HL-2A tokamak, encompassing both offline and in-situ methodologies. A study on the impact of offline siliconization on impurity concentration within HL-2A is presented, and real-time siliconization results demonstrate that it has no effect on plasma discharge. The findings indicate that in-situ siliconization is equally effective as the offline process with regard to plasma performance. With appropriate 13.56 MHz radio frequency (RF) power and pressure, a uniform glow discharge was achieved under 0.1 T in HL-2A. The effectiveness of impurity removal on HL-3 at different baking temperatures has been investigated. Measurements of glow discharge plasma density and temperature reveal that the parameters farthest from the electrode are 6 eV and ∼ 8 × 1012 m−3. Based on the breakdown tests, it was determined that the minimum breakdown voltage is approximate 430 V, and the lowest breakdown pressure is around 2.1 × 10-2 Pa when using 2.1 MHz RF power. Furthermore, experiments were conducted to investigate the efficiency of radio frequency assisted glow discharge cleaning for impurity removal. The study also evaluated the effectiveness of various methods for removing impurities. Additionally, siliconization on HL-3 was implemented successfully with determination of all key control parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信