C. Arnas , A. Campos , M. Diez , E. Bernard , C. Brun , C. Martin , F. Gensdarmes , S. Peillon , E. Tsitrone , the WEST team
{"title":"Dust collection after the high fluence campaign of the WEST tokamak","authors":"C. Arnas , A. Campos , M. Diez , E. Bernard , C. Brun , C. Martin , F. Gensdarmes , S. Peillon , E. Tsitrone , the WEST team","doi":"10.1016/j.nme.2024.101848","DOIUrl":null,"url":null,"abstract":"<div><div>For Phase 2 of WEST, the lower divertor was entirely equipped with actively cooled ITER grade plasma-facing units made of chains of tungsten beveled monoblocks. In this configuration, dust particles were collected in 2023, after the first plasma campaign mainly dedicated to repetitive long pulses in the conditions of attached plasmas to the divertor. Due to a high particle fluence and a significant tungsten erosion, large quantities of dust were produced. In addition to those produced during off-normal events and the flaking of deposits which are typical of tokamak wall erosion, dust particles due to the flaking of pure tungsten thin layers deposited on the shadowed areas of beveled monoblocks were found. As specific characteristic, these thin layers may not adhere to the divertor and consequently, may be peeled off and mobilized during plasma operation.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"42 ","pages":"Article 101848"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002710","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For Phase 2 of WEST, the lower divertor was entirely equipped with actively cooled ITER grade plasma-facing units made of chains of tungsten beveled monoblocks. In this configuration, dust particles were collected in 2023, after the first plasma campaign mainly dedicated to repetitive long pulses in the conditions of attached plasmas to the divertor. Due to a high particle fluence and a significant tungsten erosion, large quantities of dust were produced. In addition to those produced during off-normal events and the flaking of deposits which are typical of tokamak wall erosion, dust particles due to the flaking of pure tungsten thin layers deposited on the shadowed areas of beveled monoblocks were found. As specific characteristic, these thin layers may not adhere to the divertor and consequently, may be peeled off and mobilized during plasma operation.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.