Stability analysis of middle ear dynamic system after incudus joint repair under intense stimuli

IF 2.8 3区 工程技术 Q2 MECHANICS
Liang Wang , Zhanli Liu , Yongtao Sun , Jie Wang , Yueting Zhu , Hongge Han , Shuyi Xiang , Qian Ding
{"title":"Stability analysis of middle ear dynamic system after incudus joint repair under intense stimuli","authors":"Liang Wang ,&nbsp;Zhanli Liu ,&nbsp;Yongtao Sun ,&nbsp;Jie Wang ,&nbsp;Yueting Zhu ,&nbsp;Hongge Han ,&nbsp;Shuyi Xiang ,&nbsp;Qian Ding","doi":"10.1016/j.ijnonlinmec.2024.105011","DOIUrl":null,"url":null,"abstract":"<div><div>High intensity noise levels can lead to dislocation in the ossicular chain, particularly at the incus and the incudostapedial joint, significantly impacting hearing ability. However, the sensitivity of the middle ear system following ossicular chain restoration to intense external stimuli and the reconstructed material's nonlinear characteristics are still poorly understood. In order to investigate these aspects, a multi-degree-of-freedom mechanical model is developed on healthy and pathological ossicular chain reconstructions. Firstly, implant material parameters are determined by analyzing the natural frequencies of the system in an undamped condition. Secondly, the dynamic characteristics of the middle ear system are examined under various external excitations. Thirdly, utilizing a multi-time scale method, an approximate solution is derived for near-resonant frequency systems. Finally, the periodic solution stability is analyzed and assess how reconstructed middle ear parameters influence it. It is important to note that in healthy patients, post-ossicular chain reduction should be maintained in-ear sound pressure below 95 dB SPL, while for patients with pathology reconstruction, it should be kept below 65 dB SPL.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"171 ","pages":"Article 105011"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224003767","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

High intensity noise levels can lead to dislocation in the ossicular chain, particularly at the incus and the incudostapedial joint, significantly impacting hearing ability. However, the sensitivity of the middle ear system following ossicular chain restoration to intense external stimuli and the reconstructed material's nonlinear characteristics are still poorly understood. In order to investigate these aspects, a multi-degree-of-freedom mechanical model is developed on healthy and pathological ossicular chain reconstructions. Firstly, implant material parameters are determined by analyzing the natural frequencies of the system in an undamped condition. Secondly, the dynamic characteristics of the middle ear system are examined under various external excitations. Thirdly, utilizing a multi-time scale method, an approximate solution is derived for near-resonant frequency systems. Finally, the periodic solution stability is analyzed and assess how reconstructed middle ear parameters influence it. It is important to note that in healthy patients, post-ossicular chain reduction should be maintained in-ear sound pressure below 95 dB SPL, while for patients with pathology reconstruction, it should be kept below 65 dB SPL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信