Alfonso Landeros , Seyoon Ko , Jack Z. Chang , Tong Tong Wu , Kenneth Lange
{"title":"Sparse vertex discriminant analysis: Variable selection for biomedical classification applications","authors":"Alfonso Landeros , Seyoon Ko , Jack Z. Chang , Tong Tong Wu , Kenneth Lange","doi":"10.1016/j.csda.2025.108125","DOIUrl":null,"url":null,"abstract":"<div><div>Modern biomedical datasets are often high-dimensional at multiple levels of biological organization. Practitioners must therefore grapple with data to estimate sparse or low-rank structures so as to adhere to the principle of parsimony. Further complicating matters is the presence of groups in data, each of which may have distinct associations with explanatory variables or be characterized by fundamentally different covariates. These themes in data analysis are explored in the context of classification. Vertex Discriminant Analysis (VDA) offers flexible linear and nonlinear models for classification that generalize the advantages of support vector machines to data with multiple classes. The proximal distance principle, which leverages projection and proximal operators in the design of practical algorithms, handily facilitates variable selection in VDA via nonconvex distance-to-set penalties directly controlling the number of active variables. Two flavors of sparse VDA are developed to address data in which instances may be homogeneous or heterogeneous with respect to predictors characterizing classes. Empirical studies illustrate how VDA is adapted to class-specific variable selection on simulated and real datasets, with an emphasis on applications to cancer classification via gene expression patterns.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"206 ","pages":"Article 108125"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern biomedical datasets are often high-dimensional at multiple levels of biological organization. Practitioners must therefore grapple with data to estimate sparse or low-rank structures so as to adhere to the principle of parsimony. Further complicating matters is the presence of groups in data, each of which may have distinct associations with explanatory variables or be characterized by fundamentally different covariates. These themes in data analysis are explored in the context of classification. Vertex Discriminant Analysis (VDA) offers flexible linear and nonlinear models for classification that generalize the advantages of support vector machines to data with multiple classes. The proximal distance principle, which leverages projection and proximal operators in the design of practical algorithms, handily facilitates variable selection in VDA via nonconvex distance-to-set penalties directly controlling the number of active variables. Two flavors of sparse VDA are developed to address data in which instances may be homogeneous or heterogeneous with respect to predictors characterizing classes. Empirical studies illustrate how VDA is adapted to class-specific variable selection on simulated and real datasets, with an emphasis on applications to cancer classification via gene expression patterns.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]