Deformation-induced pearlite transformation and spheroidization of bearing steel for new energy vehicles

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihui Chen , Xiaolong Gan , Man Liu , Zhengliang Xue , Hao Tian , Desheng Li , Guang Xu
{"title":"Deformation-induced pearlite transformation and spheroidization of bearing steel for new energy vehicles","authors":"Zhihui Chen ,&nbsp;Xiaolong Gan ,&nbsp;Man Liu ,&nbsp;Zhengliang Xue ,&nbsp;Hao Tian ,&nbsp;Desheng Li ,&nbsp;Guang Xu","doi":"10.1016/j.jmrt.2025.01.101","DOIUrl":null,"url":null,"abstract":"<div><div>Effects of deformation strains on the microstructure and mechanical properties of bearing steel for new energy vehicles were investigated by combining thermal simulation testing machine with optical microscopy, field-emission scanning electron microscopy, electron backscatter diffraction technology, scanning transmission electron microscopy and hardness tests, etc. The results show that the warm deformation of the undercooled austenite at temperatures close to A<sub>r1</sub> induced the γ-Fe to pearlite transformation. With the increase of deformation strain from 20% to 75%, the volume fraction of deformation-induced pearlite increased gradually, the spheroidization of cementite occurred, and the hardness of the tested steel decreased from 720 HV to 361 HV. When the deformation strain reached 75%, the micron ferrite grains with average size of 2.46 μm and nano-sized spherical carbides of 81 nm formed. EBSD results show that with increasing the deformation strain, the size of pearlite colony decreased, the size of pearlite nodules, and the proportion of high-angle grain boundaries decreased first and then increased. Moreover, the kinetic curve of the deformation-induced pearlite was fitted and the strengthening mechanism of the tested steel was analyzed. The theoretical calculation results of yield strength were in good agreement with the experimental data.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 942-952"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425001012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of deformation strains on the microstructure and mechanical properties of bearing steel for new energy vehicles were investigated by combining thermal simulation testing machine with optical microscopy, field-emission scanning electron microscopy, electron backscatter diffraction technology, scanning transmission electron microscopy and hardness tests, etc. The results show that the warm deformation of the undercooled austenite at temperatures close to Ar1 induced the γ-Fe to pearlite transformation. With the increase of deformation strain from 20% to 75%, the volume fraction of deformation-induced pearlite increased gradually, the spheroidization of cementite occurred, and the hardness of the tested steel decreased from 720 HV to 361 HV. When the deformation strain reached 75%, the micron ferrite grains with average size of 2.46 μm and nano-sized spherical carbides of 81 nm formed. EBSD results show that with increasing the deformation strain, the size of pearlite colony decreased, the size of pearlite nodules, and the proportion of high-angle grain boundaries decreased first and then increased. Moreover, the kinetic curve of the deformation-induced pearlite was fitted and the strengthening mechanism of the tested steel was analyzed. The theoretical calculation results of yield strength were in good agreement with the experimental data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信