Effects of Nb–Ti double microalloying on the grain structure and precipitates of hot compressed FeCrAl alloys

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xing Fan , Fei Wang , Hongming Wang , Bowen Zhao , Runze Li , Jun Zhou
{"title":"Effects of Nb–Ti double microalloying on the grain structure and precipitates of hot compressed FeCrAl alloys","authors":"Xing Fan ,&nbsp;Fei Wang ,&nbsp;Hongming Wang ,&nbsp;Bowen Zhao ,&nbsp;Runze Li ,&nbsp;Jun Zhou","doi":"10.1016/j.jmrt.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>Grain coarsening significantly weakens the strength and toughness of FeCrAl alloys at high temperatures. This study focused on the grain refinement behaviour of a Nb–Ti double-microalloyed FeCrAl alloy (Fe–18Cr–6Al‒0.2Ti‒0.2Nb) after hot compression, and the further development of recrystallization grain size during heat treatment was also explored at temperatures of 1100 °C and 1250 °C for 1 and 6 h. Strain-induced Nb-rich and Ti-rich precipitates located at grain boundaries and/or subgrain boundaries influenced dynamic recrystallization during hot compression regardless of parameters such as the strain rate and initial grain size. Additionally, incomplete recrystallization was observed at 1100 °C, with a limited increase in the grain size and a decrease in the size and volume fraction of the Nb-rich and Ti-rich precipitates. Increasing the heating temperature accelerated discontinuous recrystallization, leading to a decrease in the internal dislocation density and hardness. This indicates that the addition of Nb and Ti significantly refined the recrystallized grain size while limiting their growth at high temperatures, which improved the mechanical properties of the Nb–Ti–FeCrAl alloy in high-temperature applications.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 928-941"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S223878542500016X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Grain coarsening significantly weakens the strength and toughness of FeCrAl alloys at high temperatures. This study focused on the grain refinement behaviour of a Nb–Ti double-microalloyed FeCrAl alloy (Fe–18Cr–6Al‒0.2Ti‒0.2Nb) after hot compression, and the further development of recrystallization grain size during heat treatment was also explored at temperatures of 1100 °C and 1250 °C for 1 and 6 h. Strain-induced Nb-rich and Ti-rich precipitates located at grain boundaries and/or subgrain boundaries influenced dynamic recrystallization during hot compression regardless of parameters such as the strain rate and initial grain size. Additionally, incomplete recrystallization was observed at 1100 °C, with a limited increase in the grain size and a decrease in the size and volume fraction of the Nb-rich and Ti-rich precipitates. Increasing the heating temperature accelerated discontinuous recrystallization, leading to a decrease in the internal dislocation density and hardness. This indicates that the addition of Nb and Ti significantly refined the recrystallized grain size while limiting their growth at high temperatures, which improved the mechanical properties of the Nb–Ti–FeCrAl alloy in high-temperature applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信