Oluwafemi Odu , Alvine B. Belle , Song Wang , Segla Kpodjedo , Timothy C. Lethbridge , Hadi Hemmati
{"title":"Automatic instantiation of assurance cases from patterns using large language models","authors":"Oluwafemi Odu , Alvine B. Belle , Song Wang , Segla Kpodjedo , Timothy C. Lethbridge , Hadi Hemmati","doi":"10.1016/j.jss.2025.112353","DOIUrl":null,"url":null,"abstract":"<div><div>An assurance case is a structured set of arguments supported by evidence, demonstrating that a system’s non-functional requirements (e.g., safety, security, reliability) have been correctly implemented. Assurance case patterns serve as templates derived from previous successful assurance cases, aimed at facilitating the creation of new assurance cases. Despite using these patterns to generate assurance cases, their instantiation remains a largely manual and error-prone process that heavily relies on domain expertise. Thus, exploring techniques to support their automatic instantiation becomes crucial. This study aims to investigate the potential of Large Language Models (LLMs) in automating the generation of assurance cases that comply with specific patterns. Specifically, we formalize assurance case patterns using predicate-based rules and then utilize LLMs, i.e., GPT-4o and GPT-4 Turbo, to automatically instantiate assurance cases from these formalized patterns. Our findings suggest that LLMs can generate assurance cases that comply with the given patterns. However, this study also highlights that LLMs may struggle with understanding some nuances related to pattern-specific relationships. While LLMs exhibit potential in the automatic generation of assurance cases, their capabilities still fall short compared to human experts. Therefore, a semi-automatic approach to instantiating assurance cases may be more practical at this time.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"222 ","pages":"Article 112353"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000214","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
An assurance case is a structured set of arguments supported by evidence, demonstrating that a system’s non-functional requirements (e.g., safety, security, reliability) have been correctly implemented. Assurance case patterns serve as templates derived from previous successful assurance cases, aimed at facilitating the creation of new assurance cases. Despite using these patterns to generate assurance cases, their instantiation remains a largely manual and error-prone process that heavily relies on domain expertise. Thus, exploring techniques to support their automatic instantiation becomes crucial. This study aims to investigate the potential of Large Language Models (LLMs) in automating the generation of assurance cases that comply with specific patterns. Specifically, we formalize assurance case patterns using predicate-based rules and then utilize LLMs, i.e., GPT-4o and GPT-4 Turbo, to automatically instantiate assurance cases from these formalized patterns. Our findings suggest that LLMs can generate assurance cases that comply with the given patterns. However, this study also highlights that LLMs may struggle with understanding some nuances related to pattern-specific relationships. While LLMs exhibit potential in the automatic generation of assurance cases, their capabilities still fall short compared to human experts. Therefore, a semi-automatic approach to instantiating assurance cases may be more practical at this time.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.