{"title":"Mechanism on lattice thermal conductivity of carbon-vacancy and porous medium entropy ceramics","authors":"Xianteng Zhou , Yuanji Xu , Yue Chen , Fuyang Tian","doi":"10.1016/j.scriptamat.2025.116568","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy ceramics with vacancy and pores show abnormal lattice thermal conductivity with temperature. In this work, we conduct the machine learning interatomic potentials in combination with the classical molecular dynamics to study the mechanism of lattice thermal conductivity in (NbTaZr)C medium entropy ceramics with different carbon vacancies and porous defects. The trained neuroevolution potentials excellently reproduce the ab initio calculations. Results indicate that both vacancy and pore can enhance the phonon scattering at low- and middle-frequency ranges, reduce the phonon lifetime, shift from acoustic to defect scattering, and make the phonon vibration modes localized. Further, they decrease the temperature dependence of lattice thermal conductivity. We find that propagation-type phonons dominate the thermal conductivity in the perfect structure, whereas diffusion-type phonons become predominant in carbon-vacancy and porous (NbTaZr)C.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"259 ","pages":"Article 116568"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225000326","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy ceramics with vacancy and pores show abnormal lattice thermal conductivity with temperature. In this work, we conduct the machine learning interatomic potentials in combination with the classical molecular dynamics to study the mechanism of lattice thermal conductivity in (NbTaZr)C medium entropy ceramics with different carbon vacancies and porous defects. The trained neuroevolution potentials excellently reproduce the ab initio calculations. Results indicate that both vacancy and pore can enhance the phonon scattering at low- and middle-frequency ranges, reduce the phonon lifetime, shift from acoustic to defect scattering, and make the phonon vibration modes localized. Further, they decrease the temperature dependence of lattice thermal conductivity. We find that propagation-type phonons dominate the thermal conductivity in the perfect structure, whereas diffusion-type phonons become predominant in carbon-vacancy and porous (NbTaZr)C.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.