Molecular dynamics simulations of interaction between a super edge dislocation and interstitial dislocation loops in irradiated L12-Ni3Al

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheng Chen , Dongyang Qin , Yiding Wang , Fei Xu , Jun Song
{"title":"Molecular dynamics simulations of interaction between a super edge dislocation and interstitial dislocation loops in irradiated L12-Ni3Al","authors":"Cheng Chen ,&nbsp;Dongyang Qin ,&nbsp;Yiding Wang ,&nbsp;Fei Xu ,&nbsp;Jun Song","doi":"10.1016/j.jnucmat.2024.155541","DOIUrl":null,"url":null,"abstract":"<div><div>The study employed MD simulations to investigate the interactions between a <span><math><mrow><mo>〈</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>〉</mo></mrow></math></span> super-edge dislocation, consisting of the four Shockley partials, and interstitial dislocation loops (IDLs) in irradiated <span><math><mrow><mi>L</mi><msub><mn>1</mn><mn>2</mn></msub></mrow></math></span>-Ni<sub>3</sub>Al. Accounting for symmetry breakage in the <span><math><mrow><mi>L</mi><msub><mn>1</mn><mn>2</mn></msub></mrow></math></span> lattice, the superlattice planar faults with four distinct fault vectors have been considered for different IDL configurations. The detailed dislocation reactions and structural evolution events were identified as the four partials interacted with various IDL configurations. The slipping characteristics of Shockley partials within the IDLs and the resultant shearing and looping mechanisms were also clarified, revealing distinct energetic transition states determined by the fault vectors after the Shockley partials sweeping the IDL. Furthermore, significant variations in critical resolved shear stress (CRSS) required for the super-edge dislocation to move past the IDL were observed, attributed to various sizes and faulted vectors of enclosed superlattice planar faults in the IDLs. The current study extends the existing dislocation-IDL interaction theory from pristine FCC to <span><math><mrow><mi>L</mi><msub><mn>1</mn><mn>2</mn></msub></mrow></math></span> lattice, advances the understanding of irradiation hardening effects in <span><math><mrow><mi>L</mi><msub><mn>1</mn><mn>2</mn></msub></mrow></math></span>-<span><math><mrow><mi>N</mi><msub><mi>i</mi><mn>3</mn></msub></mrow></math></span>Al, and suggests potential applicability to other <span><math><mrow><mi>L</mi><msub><mn>1</mn><mn>2</mn></msub></mrow></math></span> systems.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"605 ","pages":"Article 155541"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524006421","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study employed MD simulations to investigate the interactions between a 11¯0 super-edge dislocation, consisting of the four Shockley partials, and interstitial dislocation loops (IDLs) in irradiated L12-Ni3Al. Accounting for symmetry breakage in the L12 lattice, the superlattice planar faults with four distinct fault vectors have been considered for different IDL configurations. The detailed dislocation reactions and structural evolution events were identified as the four partials interacted with various IDL configurations. The slipping characteristics of Shockley partials within the IDLs and the resultant shearing and looping mechanisms were also clarified, revealing distinct energetic transition states determined by the fault vectors after the Shockley partials sweeping the IDL. Furthermore, significant variations in critical resolved shear stress (CRSS) required for the super-edge dislocation to move past the IDL were observed, attributed to various sizes and faulted vectors of enclosed superlattice planar faults in the IDLs. The current study extends the existing dislocation-IDL interaction theory from pristine FCC to L12 lattice, advances the understanding of irradiation hardening effects in L12-Ni3Al, and suggests potential applicability to other L12 systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信