Efficient and privacy-preserving butterfly counting on encrypted bipartite graphs

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xin Pang , Lanxiang Chen
{"title":"Efficient and privacy-preserving butterfly counting on encrypted bipartite graphs","authors":"Xin Pang ,&nbsp;Lanxiang Chen","doi":"10.1016/j.jisa.2024.103952","DOIUrl":null,"url":null,"abstract":"<div><div>Bipartite graphs have numerous real-world applications, with the butterfly motif serving as a key higher-order structure that models cohesion within these graphs. Analyzing butterflies is crucial for a comprehensive understanding of networks, making butterfly counting a significant focus for researchers. In recent years, various efficient methods for exact butterfly counting, along with sampling-based approximate schemes, have been proposed for plaintext bipartite graphs. However, these methods often overlook data privacy concerns, which are critical in real-world scenarios such as doctor–patient and user–item relationships. Additionally, traditional encryption methods do not work due to the nature of graph structures. To tackle these challenges, we propose two schemes for exact <u>b</u>utter<u>f</u>ly <u>c</u>ounting on <u>e</u>ncrypted <u>b</u>ipartite graphs (EB-BFC), enabling butterfly counting for specific vertices or edges to protect privacy of butterfly counting. Firstly, we demonstrate how structured encryption techniques could be used to encrypt the bipartite graph and construct a secure index, resulting in the efficient, privacy-preserving scheme EB-BFC<sub>1</sub>. Secondly, to ensure vertex data privacy, we propose a butterfly counting scheme based on Private Set Intersection, EB-BFC<sub>2</sub>. Finally, we demonstrate the security and efficiency of our proposed schemes through theoretical proofs and experiments on real-world datasets.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 103952"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624002540","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Bipartite graphs have numerous real-world applications, with the butterfly motif serving as a key higher-order structure that models cohesion within these graphs. Analyzing butterflies is crucial for a comprehensive understanding of networks, making butterfly counting a significant focus for researchers. In recent years, various efficient methods for exact butterfly counting, along with sampling-based approximate schemes, have been proposed for plaintext bipartite graphs. However, these methods often overlook data privacy concerns, which are critical in real-world scenarios such as doctor–patient and user–item relationships. Additionally, traditional encryption methods do not work due to the nature of graph structures. To tackle these challenges, we propose two schemes for exact butterfly counting on encrypted bipartite graphs (EB-BFC), enabling butterfly counting for specific vertices or edges to protect privacy of butterfly counting. Firstly, we demonstrate how structured encryption techniques could be used to encrypt the bipartite graph and construct a secure index, resulting in the efficient, privacy-preserving scheme EB-BFC1. Secondly, to ensure vertex data privacy, we propose a butterfly counting scheme based on Private Set Intersection, EB-BFC2. Finally, we demonstrate the security and efficiency of our proposed schemes through theoretical proofs and experiments on real-world datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Security and Applications
Journal of Information Security and Applications Computer Science-Computer Networks and Communications
CiteScore
10.90
自引率
5.40%
发文量
206
审稿时长
56 days
期刊介绍: Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信