Influence of tundish flux on reoxidation behavior of Al-killed Ti-containing stainless steel

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yeongjin Jun , Yongsug Chung , Sungjin Park , Suchang Kang , Min-Kyu Paek , Joo Hyun Park
{"title":"Influence of tundish flux on reoxidation behavior of Al-killed Ti-containing stainless steel","authors":"Yeongjin Jun ,&nbsp;Yongsug Chung ,&nbsp;Sungjin Park ,&nbsp;Suchang Kang ,&nbsp;Min-Kyu Paek ,&nbsp;Joo Hyun Park","doi":"10.1016/j.jmrt.2025.01.110","DOIUrl":null,"url":null,"abstract":"<div><div>The cleanliness of Ti-containing ferritic stainless steel (Ti-FSS) has been improved via vacuum-oxygen-decarburization (VOD) and ladle treatment (LT) processes. However, the reoxidation phenomena inevitably occur during melt transfer from ladle to continuous casting tundish, resulting in a loss of titanium yield in conjunction with the formation of reoxidative inclusions. Hence, the present work aims to systematically investigate the combinational effect of different tundish fluxes on the reoxidation behavior of Al-killed Ti-FSS melt. Rice husk ash (RHA) and MgO (M) insulation powders, and calcium aluminate, CaO–Al<sub>2</sub>O<sub>3</sub> (CA) based flux were used for the experiments. When the molten steel was covered by M + CA fluxes, the average size of inclusions decreased. On the other hand, when the RHA + CA fluxes were added, the average size of inclusion decreased, whereas total number of inclusions significantly increased due to a reoxidation reaction by SiO<sub>2</sub> in RHA. When the M + RHA + CA combinative fluxes were added, the size of inclusion decreased, and the number of inclusions exhibited a value between the M + CA and RHA + CA conditions. Consequently, a decrease in total oxygen content in Ti-FSS was most effective in the M + CA flux combination.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 1250-1264"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425001103","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The cleanliness of Ti-containing ferritic stainless steel (Ti-FSS) has been improved via vacuum-oxygen-decarburization (VOD) and ladle treatment (LT) processes. However, the reoxidation phenomena inevitably occur during melt transfer from ladle to continuous casting tundish, resulting in a loss of titanium yield in conjunction with the formation of reoxidative inclusions. Hence, the present work aims to systematically investigate the combinational effect of different tundish fluxes on the reoxidation behavior of Al-killed Ti-FSS melt. Rice husk ash (RHA) and MgO (M) insulation powders, and calcium aluminate, CaO–Al2O3 (CA) based flux were used for the experiments. When the molten steel was covered by M + CA fluxes, the average size of inclusions decreased. On the other hand, when the RHA + CA fluxes were added, the average size of inclusion decreased, whereas total number of inclusions significantly increased due to a reoxidation reaction by SiO2 in RHA. When the M + RHA + CA combinative fluxes were added, the size of inclusion decreased, and the number of inclusions exhibited a value between the M + CA and RHA + CA conditions. Consequently, a decrease in total oxygen content in Ti-FSS was most effective in the M + CA flux combination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信