Apply a deep learning hybrid model optimized by an Improved Chimp Optimization Algorithm in PM2.5 prediction

Ming Wei, Xiaopeng Du
{"title":"Apply a deep learning hybrid model optimized by an Improved Chimp Optimization Algorithm in PM2.5 prediction","authors":"Ming Wei,&nbsp;Xiaopeng Du","doi":"10.1016/j.mlwa.2025.100624","DOIUrl":null,"url":null,"abstract":"<div><div>PM<sub>2.5</sub> pollution in the atmosphere not only contaminates the environment but also seriously affects human health. Therefore, studying how to accurately predict future PM<sub>2.5</sub> concentrations holds significant importance and practical value. This paper innovatively <span><math><mrow><mi>P</mi><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span>proposes a high-accuracy prediction model: RF-ICHOA-CNN-LSTM-Attention. First, the Random Forest (RF) model is utilized to evaluate the importance of air pollution and meteorological features and select more suitable input features. Subsequently, a one-dimensional convolutional neural network (1DCNN) with efficient feature extraction capability is used to extract dynamic features from sequences. The extracted feature vector sequences are then fed into a Long Short-Term Memory Network (LSTM). After the LSTM, an Attention Mechanism is incorporated to assign different weights to the input features, emphasizing the role of the important features. Additionally, the Improved Chimp Optimization Algorithm (IChOA) is employed to optimize the number of neurons in the two hidden layers of LSTM, the learning rate, and the number of training epochs. The experimental results on 12 test functions demonstrate that the optimization performance of IChOA is better than that of ChOA and the representative swarm optimization algorithms used for comparison. In the case of PM<sub>2.5</sub> predictions in Yining and Beijing, experimental results show that the proposed model achieved the best performance in terms of RMSE, MAE, and R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> This indicates its excellent prediction accuracy and generalization capability, Thus proving its effectiveness in predicting PM<sub>2.5</sub> concentration in the real world.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"19 ","pages":"Article 100624"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PM2.5 pollution in the atmosphere not only contaminates the environment but also seriously affects human health. Therefore, studying how to accurately predict future PM2.5 concentrations holds significant importance and practical value. This paper innovatively PM2.5proposes a high-accuracy prediction model: RF-ICHOA-CNN-LSTM-Attention. First, the Random Forest (RF) model is utilized to evaluate the importance of air pollution and meteorological features and select more suitable input features. Subsequently, a one-dimensional convolutional neural network (1DCNN) with efficient feature extraction capability is used to extract dynamic features from sequences. The extracted feature vector sequences are then fed into a Long Short-Term Memory Network (LSTM). After the LSTM, an Attention Mechanism is incorporated to assign different weights to the input features, emphasizing the role of the important features. Additionally, the Improved Chimp Optimization Algorithm (IChOA) is employed to optimize the number of neurons in the two hidden layers of LSTM, the learning rate, and the number of training epochs. The experimental results on 12 test functions demonstrate that the optimization performance of IChOA is better than that of ChOA and the representative swarm optimization algorithms used for comparison. In the case of PM2.5 predictions in Yining and Beijing, experimental results show that the proposed model achieved the best performance in terms of RMSE, MAE, and R2 This indicates its excellent prediction accuracy and generalization capability, Thus proving its effectiveness in predicting PM2.5 concentration in the real world.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信