Enabling strong and formable advanced high-strength steels through inherited homogeneous microstructure

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ning Xu , Lingyu Wang , Jun Hu , Yuxiang Wu , Xiaolu Wei , Weilin Xue , Zhisong Chai , Jinliang Wang , Yizhuang Li , Wei Xu
{"title":"Enabling strong and formable advanced high-strength steels through inherited homogeneous microstructure","authors":"Ning Xu ,&nbsp;Lingyu Wang ,&nbsp;Jun Hu ,&nbsp;Yuxiang Wu ,&nbsp;Xiaolu Wei ,&nbsp;Weilin Xue ,&nbsp;Zhisong Chai ,&nbsp;Jinliang Wang ,&nbsp;Yizhuang Li ,&nbsp;Wei Xu","doi":"10.1016/j.scriptamat.2025.116560","DOIUrl":null,"url":null,"abstract":"<div><div>Fabricating quenching and partitioning (Q&amp;P) steels with less mechanical heterogeneity among phases is crucial for achieving balanced strength and formability. In the present study, we demonstrate a strategy for fine-tuning the microstructural inheritance effect to optimize the final microstructure. This approach involves a rapid cooling and tempering step after hot rolling to template an initial microstructure with uniformly distributed ferrite laths. The final microstructure contains a higher volume fraction of primary martensite and stable retained austenite, leading to enhancement in both strength and ductility. The templating method also eliminates bulky ferrite and significantly reduces strain localization, as demonstrated by microscopic digital image correlation (μ-DIC). The templated final microstructure not only achieves higher yield strength compared to existing Q&amp;P980 steels, but also exhibits simultaneous improvement in elongation and stretch-flangeability. Our findings suggest that it is essential to consider and leverage the inheritance effect to optimize products with long processing chains.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"259 ","pages":"Article 116560"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225000247","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fabricating quenching and partitioning (Q&P) steels with less mechanical heterogeneity among phases is crucial for achieving balanced strength and formability. In the present study, we demonstrate a strategy for fine-tuning the microstructural inheritance effect to optimize the final microstructure. This approach involves a rapid cooling and tempering step after hot rolling to template an initial microstructure with uniformly distributed ferrite laths. The final microstructure contains a higher volume fraction of primary martensite and stable retained austenite, leading to enhancement in both strength and ductility. The templating method also eliminates bulky ferrite and significantly reduces strain localization, as demonstrated by microscopic digital image correlation (μ-DIC). The templated final microstructure not only achieves higher yield strength compared to existing Q&P980 steels, but also exhibits simultaneous improvement in elongation and stretch-flangeability. Our findings suggest that it is essential to consider and leverage the inheritance effect to optimize products with long processing chains.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信