Enhancing thyroid disease prediction and comorbidity management through advanced machine learning frameworks

P. Sanju , N. Syed Siraj Ahmed , P. Ramachandran , P. Mohamed Sajid , R. Jayanthi
{"title":"Enhancing thyroid disease prediction and comorbidity management through advanced machine learning frameworks","authors":"P. Sanju ,&nbsp;N. Syed Siraj Ahmed ,&nbsp;P. Ramachandran ,&nbsp;P. Mohamed Sajid ,&nbsp;R. Jayanthi","doi":"10.1016/j.ceh.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Thyroid disease is one of the most prevalent endocrine disorders worldwide, necessitating precise and efficient diagnostic models for improved clinical outcomes. This study proposes a Hybrid Feature Selection and Deep Learning Framework (HFSDLF) that integrates Random Forests with Principal Component Analysis (PCA) and L1 regularization for effective feature selection and classification. Utilizing the UCI Thyroid Dataset, the framework combines the strengths of deep learning-based feature extraction and traditional machine learning classifiers. The Random Forest classifier achieved the highest accuracy of 96.30 %, outperforming other models such as Decision Trees and Logistic Regression, with notable improvements in sensitivity and specificity. The novelty of this work lies in its hybrid approach to feature selection, which reduces dimensionality while retaining the most informative features, and its application of an optimized Random Forest model for enhanced classification accuracy. Comparative analysis with existing methods further highlights the superiority of the proposed framework in terms of accuracy and processing efficiency. This research addresses key limitations of existing approaches and contributes to the field by demonstrating a scalable and interpretable solution for thyroid disease diagnosis. The proposed framework provides a benchmark for future studies, underscoring the importance of hybrid methodologies in medical data analysis.</div></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"8 ","pages":"Pages 7-16"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914125000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid disease is one of the most prevalent endocrine disorders worldwide, necessitating precise and efficient diagnostic models for improved clinical outcomes. This study proposes a Hybrid Feature Selection and Deep Learning Framework (HFSDLF) that integrates Random Forests with Principal Component Analysis (PCA) and L1 regularization for effective feature selection and classification. Utilizing the UCI Thyroid Dataset, the framework combines the strengths of deep learning-based feature extraction and traditional machine learning classifiers. The Random Forest classifier achieved the highest accuracy of 96.30 %, outperforming other models such as Decision Trees and Logistic Regression, with notable improvements in sensitivity and specificity. The novelty of this work lies in its hybrid approach to feature selection, which reduces dimensionality while retaining the most informative features, and its application of an optimized Random Forest model for enhanced classification accuracy. Comparative analysis with existing methods further highlights the superiority of the proposed framework in terms of accuracy and processing efficiency. This research addresses key limitations of existing approaches and contributes to the field by demonstrating a scalable and interpretable solution for thyroid disease diagnosis. The proposed framework provides a benchmark for future studies, underscoring the importance of hybrid methodologies in medical data analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信