{"title":"Termination of rewriting on reversible Boolean circuits as a free 3-category problem","authors":"Adriano Barile, Stefano Berardi, Luca Roversi","doi":"10.1016/j.tcs.2024.115031","DOIUrl":null,"url":null,"abstract":"<div><div>Reversible Boolean Circuits are an interesting computational model under many aspects and in different fields, ranging from Reversible Computing to Quantum Computing. Our contribution is to describe a specific class of Reversible Boolean Circuits - which is as expressive as classical circuits - as a bi-dimensional diagrammatic programming language. We uniformly represent the Reversible Boolean Circuits we focus on as a free 3-category <strong>Toff</strong>. This formalism allows us to incorporate the representation of circuits and of rewriting rules on them, and to prove termination of rewriting. Termination follows from defining a non-identities-preserving functor from our free 3-category <strong>Toff</strong> into a suitable 3-category <strong>Move</strong> that traces the “moves” applied to wires inside circuits.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1028 ","pages":"Article 115031"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006480","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Reversible Boolean Circuits are an interesting computational model under many aspects and in different fields, ranging from Reversible Computing to Quantum Computing. Our contribution is to describe a specific class of Reversible Boolean Circuits - which is as expressive as classical circuits - as a bi-dimensional diagrammatic programming language. We uniformly represent the Reversible Boolean Circuits we focus on as a free 3-category Toff. This formalism allows us to incorporate the representation of circuits and of rewriting rules on them, and to prove termination of rewriting. Termination follows from defining a non-identities-preserving functor from our free 3-category Toff into a suitable 3-category Move that traces the “moves” applied to wires inside circuits.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.