Integrated assembly, measurement, and adjustment method of reconfigurable flexible fixture for aircraft panels based on augmented reality and human-computer interaction

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Xiangrong Zhang , Shuang Meng , Binbin Wang , Lianyu Zheng , Rui Zhang , Xufei Li
{"title":"Integrated assembly, measurement, and adjustment method of reconfigurable flexible fixture for aircraft panels based on augmented reality and human-computer interaction","authors":"Xiangrong Zhang ,&nbsp;Shuang Meng ,&nbsp;Binbin Wang ,&nbsp;Lianyu Zheng ,&nbsp;Rui Zhang ,&nbsp;Xufei Li","doi":"10.1016/j.jmsy.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the characteristics of reconfigurable flexible fixtures (RFFs) for aircraft panels, the automation of their assembly is limited by technology and cost. As a result, manual assembly remains the predominant method. During the manual assembly, workers are affected by several challenges, such as difficulty in understanding the process documents and drawings, distinguishing the assembly positions of the similar components, inefficient data transmission, and determining the adjustment direction of contour board locators (CBLs). These issues arise because of inadequate digital assistance to workers. This paper proposes an integrated assembly, measurement, and adjustment (AMA) method for RFFs based on augmented reality (AR) and human–computer interaction (HCI) to assist workers. First, an information model based on core process elements for the assembly process is constructed. This model clarifies the correlations among multi-source data. Then, measured data is transformed into six-dimensional (6D) parameters to assist in the adjustment of CBLs. Based on the model and 6D parameters, the multiple visual assembly guidance is established by AR virtual-reality fusion technology. Subsequently, the HCI technology is introduced, to adaptively provide guidance via the hand-free head pointer. Workers use the AR head-mounted devices (HMDs) as a medium to interact with the laser tracker, which enables to quickly and accurately obtain the measurement data. Finally, AR and HCI technology are combined to establish an integrated process of AMA of RFFs. This method significantly improves the collaboration between workers and information during the assembly process of RFF. Field-assembly validation demonstrates that, compared with conventional methods, the proposed method achieves a positioning accuracy of ± 0.12 mm and enhances assembly efficiency by 32.87 %.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"79 ","pages":"Pages 117-133"},"PeriodicalIF":12.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000111","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the characteristics of reconfigurable flexible fixtures (RFFs) for aircraft panels, the automation of their assembly is limited by technology and cost. As a result, manual assembly remains the predominant method. During the manual assembly, workers are affected by several challenges, such as difficulty in understanding the process documents and drawings, distinguishing the assembly positions of the similar components, inefficient data transmission, and determining the adjustment direction of contour board locators (CBLs). These issues arise because of inadequate digital assistance to workers. This paper proposes an integrated assembly, measurement, and adjustment (AMA) method for RFFs based on augmented reality (AR) and human–computer interaction (HCI) to assist workers. First, an information model based on core process elements for the assembly process is constructed. This model clarifies the correlations among multi-source data. Then, measured data is transformed into six-dimensional (6D) parameters to assist in the adjustment of CBLs. Based on the model and 6D parameters, the multiple visual assembly guidance is established by AR virtual-reality fusion technology. Subsequently, the HCI technology is introduced, to adaptively provide guidance via the hand-free head pointer. Workers use the AR head-mounted devices (HMDs) as a medium to interact with the laser tracker, which enables to quickly and accurately obtain the measurement data. Finally, AR and HCI technology are combined to establish an integrated process of AMA of RFFs. This method significantly improves the collaboration between workers and information during the assembly process of RFF. Field-assembly validation demonstrates that, compared with conventional methods, the proposed method achieves a positioning accuracy of ± 0.12 mm and enhances assembly efficiency by 32.87 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信