Detection of fraud in IoT based credit card collected dataset using machine learning

Mohammed Naif Alatawi
{"title":"Detection of fraud in IoT based credit card collected dataset using machine learning","authors":"Mohammed Naif Alatawi","doi":"10.1016/j.mlwa.2024.100603","DOIUrl":null,"url":null,"abstract":"<div><div>Due in large part to the proliferation of electronic financial transactions, credit card fraud is a serious problem for customers, merchants, and banks. For this reason, a novel approach is offered to fraud detection that makes use of cutting-edge ML methods in an IoT setting. The method in this paper employs a carefully selected set of cutting-edge ML algorithms specifically designed to handle the complexities of fraud detection, in contrast to older approaches that have difficulty adapting to shifting fraud patterns. In order to address the many facets of the problem, the methodology employs a large collection of ML models. These models include deep neural networks, decision trees, support vector machines, random forests, and clustering methods. This paper provides a solution that is able to detect fraudulent activity in real time by efficiently analyzing massive amounts of transactional data thanks to the power of big data processing and cloud computing. The model is able to distinguish between valid and fraudulent transactions thanks to careful feature engineering and anomaly detection methods. Extensive experiments on a large and diverse collection of real and simulated credit card transactions, both legitimate and fraudulent, prove the success of this technique. The findings demonstrate state-of-the-art performance in fraud detection, with increased precision and recall rates compared to traditional methods. And because the presented ML models are easy to understand, they improve fraud risk management and prevention techniques. The findings of this study provide banking institutions, government agencies, and policymakers with vital information for combating the negative effects of credit card fraud on consumers, companies, and the economy as a whole. This study provides a solution to the problem of fraud in the Internet of Things (IoT) ecosystem and paves the way for future developments in this crucial area by proposing a unique ML-driven approach to the problem.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"19 ","pages":"Article 100603"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due in large part to the proliferation of electronic financial transactions, credit card fraud is a serious problem for customers, merchants, and banks. For this reason, a novel approach is offered to fraud detection that makes use of cutting-edge ML methods in an IoT setting. The method in this paper employs a carefully selected set of cutting-edge ML algorithms specifically designed to handle the complexities of fraud detection, in contrast to older approaches that have difficulty adapting to shifting fraud patterns. In order to address the many facets of the problem, the methodology employs a large collection of ML models. These models include deep neural networks, decision trees, support vector machines, random forests, and clustering methods. This paper provides a solution that is able to detect fraudulent activity in real time by efficiently analyzing massive amounts of transactional data thanks to the power of big data processing and cloud computing. The model is able to distinguish between valid and fraudulent transactions thanks to careful feature engineering and anomaly detection methods. Extensive experiments on a large and diverse collection of real and simulated credit card transactions, both legitimate and fraudulent, prove the success of this technique. The findings demonstrate state-of-the-art performance in fraud detection, with increased precision and recall rates compared to traditional methods. And because the presented ML models are easy to understand, they improve fraud risk management and prevention techniques. The findings of this study provide banking institutions, government agencies, and policymakers with vital information for combating the negative effects of credit card fraud on consumers, companies, and the economy as a whole. This study provides a solution to the problem of fraud in the Internet of Things (IoT) ecosystem and paves the way for future developments in this crucial area by proposing a unique ML-driven approach to the problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信