Jiaxin Lv , Xiaochen Lu , Junquan Yu , Zhusheng Shi , Jianguo Lin
{"title":"Curvature, microstructure, and mechanical property of an asymmetric aluminium profile produced by sideways extrusion with variable speed","authors":"Jiaxin Lv , Xiaochen Lu , Junquan Yu , Zhusheng Shi , Jianguo Lin","doi":"10.1016/j.jmatprotec.2024.118699","DOIUrl":null,"url":null,"abstract":"<div><div>Sideways extrusion is an advanced technology for one-step production of curved profiles eliminating the need for subsequent bending processes. Its effectiveness in controlling the bending curvature of symmetric products has been well established in prior research. However, there is no report on the effect of asymmetric product shape on bending curvature and still lacking quantitative analysis of welding quality and microstructure of the extrudate for the sideways extrusion, limiting its application scope. In this study, an asymmetric Z-shape aluminium profile was manufactured using sideways extrusion at different speeds and the corresponding numerical simulation was conducted to analyse the extrudate shape, welding quality, microstructural and mechanical properties. The bending mechanism of extrudate, resulting from the non-uniform metal flow during extrusion, was identified. The curvature radius was found to depend on the average exit velocity and the velocity gradient along the transverse direction both of which increase with increasing extrusion speed. Improvements in welding quality and increased recrystallisation fraction during extrusion were quantitatively predicted using developed subroutines and these predications aligned well with the results from post-extrusion examination. In addition, tensile test results differed for profile sections extruded at different speeds, which were attributed to the combined effect of welding quality, work hardening, recovery and continuous dynamic recrystallisation.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"336 ","pages":"Article 118699"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624004175","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sideways extrusion is an advanced technology for one-step production of curved profiles eliminating the need for subsequent bending processes. Its effectiveness in controlling the bending curvature of symmetric products has been well established in prior research. However, there is no report on the effect of asymmetric product shape on bending curvature and still lacking quantitative analysis of welding quality and microstructure of the extrudate for the sideways extrusion, limiting its application scope. In this study, an asymmetric Z-shape aluminium profile was manufactured using sideways extrusion at different speeds and the corresponding numerical simulation was conducted to analyse the extrudate shape, welding quality, microstructural and mechanical properties. The bending mechanism of extrudate, resulting from the non-uniform metal flow during extrusion, was identified. The curvature radius was found to depend on the average exit velocity and the velocity gradient along the transverse direction both of which increase with increasing extrusion speed. Improvements in welding quality and increased recrystallisation fraction during extrusion were quantitatively predicted using developed subroutines and these predications aligned well with the results from post-extrusion examination. In addition, tensile test results differed for profile sections extruded at different speeds, which were attributed to the combined effect of welding quality, work hardening, recovery and continuous dynamic recrystallisation.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.