Ömer Sen , Bozhidar Ivanov , Christian Kloos , Christoph Zöll , Philipp Lutat , Martin Henze , Andreas Ulbig , Michael Andres
{"title":"Simulation of multi-stage attack and defense mechanisms in smart grids","authors":"Ömer Sen , Bozhidar Ivanov , Christian Kloos , Christoph Zöll , Philipp Lutat , Martin Henze , Andreas Ulbig , Michael Andres","doi":"10.1016/j.ijcip.2024.100727","DOIUrl":null,"url":null,"abstract":"<div><div>The power grid is a vital infrastructure in modern society, essential for ensuring public safety and welfare. As it increasingly relies on digital technologies for its operation, it becomes more vulnerable to sophisticated cyber threats. These threats, if successful, could disrupt the grid’s functionality, leading to severe consequences. To mitigate these risks, it is crucial to develop effective protective measures, such as intrusion detection systems and decision support systems, that can detect and respond to cyber attacks. Machine learning methods have shown great promise in this area, but their effectiveness is often limited by the scarcity of high-quality data, primarily due to confidentiality and access issues.</div><div>In response to this challenge, our work introduces an advanced simulation environment that replicates the power grid’s infrastructure and communication behavior. This environment enables the simulation of complex, multi-stage cyber attacks and defensive mechanisms, using attack trees to map the attacker’s steps and a game-theoretic approach to model the defender’s response strategies. The primary goal of this simulation framework is to generate a diverse range of realistic attack data that can be used to train machine learning algorithms for detecting and mitigating cyber attacks. Additionally, the environment supports the evaluation of new security technologies, including advanced decision support systems, by providing a controlled and flexible testing platform.</div><div>Our simulation environment is designed to be modular and scalable, supporting the integration of new use cases and attack scenarios without relying heavily on external components. It enables the entire process of scenario generation, data modeling, data point mapping, and power flow simulation, along with the depiction of communication traffic, in a coherent process chain. This ensures that all relevant data needed for cyber security investigations, including the interactions between attacker and defender, are captured under consistent conditions and constraints.</div><div>The simulation environment also includes a detailed modeling of communication protocols and grid operation management, providing insights into how attacks propagate through the network. The generated data are validated through laboratory tests, ensuring that the simulation reflects real-world conditions. These datasets are used to train machine learning models for intrusion detection and evaluate their performance, specifically focusing on how well they can detect complex attack patterns in power grid operations.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"48 ","pages":"Article 100727"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000684","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The power grid is a vital infrastructure in modern society, essential for ensuring public safety and welfare. As it increasingly relies on digital technologies for its operation, it becomes more vulnerable to sophisticated cyber threats. These threats, if successful, could disrupt the grid’s functionality, leading to severe consequences. To mitigate these risks, it is crucial to develop effective protective measures, such as intrusion detection systems and decision support systems, that can detect and respond to cyber attacks. Machine learning methods have shown great promise in this area, but their effectiveness is often limited by the scarcity of high-quality data, primarily due to confidentiality and access issues.
In response to this challenge, our work introduces an advanced simulation environment that replicates the power grid’s infrastructure and communication behavior. This environment enables the simulation of complex, multi-stage cyber attacks and defensive mechanisms, using attack trees to map the attacker’s steps and a game-theoretic approach to model the defender’s response strategies. The primary goal of this simulation framework is to generate a diverse range of realistic attack data that can be used to train machine learning algorithms for detecting and mitigating cyber attacks. Additionally, the environment supports the evaluation of new security technologies, including advanced decision support systems, by providing a controlled and flexible testing platform.
Our simulation environment is designed to be modular and scalable, supporting the integration of new use cases and attack scenarios without relying heavily on external components. It enables the entire process of scenario generation, data modeling, data point mapping, and power flow simulation, along with the depiction of communication traffic, in a coherent process chain. This ensures that all relevant data needed for cyber security investigations, including the interactions between attacker and defender, are captured under consistent conditions and constraints.
The simulation environment also includes a detailed modeling of communication protocols and grid operation management, providing insights into how attacks propagate through the network. The generated data are validated through laboratory tests, ensuring that the simulation reflects real-world conditions. These datasets are used to train machine learning models for intrusion detection and evaluate their performance, specifically focusing on how well they can detect complex attack patterns in power grid operations.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.