State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory

Chaoran Li , Sichen Zhu , Liuli Zhang , Xinjian Liu , Menghan Li , Haiqin Zhou , Qiang Zhang , Zhonghao Rao
{"title":"State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory","authors":"Chaoran Li ,&nbsp;Sichen Zhu ,&nbsp;Liuli Zhang ,&nbsp;Xinjian Liu ,&nbsp;Menghan Li ,&nbsp;Haiqin Zhou ,&nbsp;Qiang Zhang ,&nbsp;Zhonghao Rao","doi":"10.1016/j.geits.2024.100226","DOIUrl":null,"url":null,"abstract":"<div><div>State of charge (SOC) plays a vital role in the safe, efficient, and stable operation of lithium-ion batteries. Since the difference between the surface temperature and core temperature of batteries under severe conditions can reach 5–10 ​°C, using the surface temperature as input feature of SOC estimation is unreasonable. Due to the high requirement for storage space, SOC estimation methods based on deep learning methods are limited to implement in embedded devices. In this paper, to achieve reasonable and high accuracy SOC estimation and provide support for battery thermal management, SOC estimation based on state of temperature (SOT) is implemented. And weight clustered-convolutional neural network-long short-term memory (WC-CNN-LSTM) is proposed to achieve high accuracy SOT and SOC estimation with small model sizes. A self-established dataset is used to verify the effectiveness of the proposed method and model. The WC-CNN-LSTM model with the number of clusters of 400 could achieve comparative accuracy with the baseline model with a 52.98% smaller model size and 25.08% more time consumption for model training on SOT estimation. And it could also achieve consistent and even better accuracy on SOC estimation with the baseline model with a small model size.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 1","pages":"Article 100226"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State of charge (SOC) plays a vital role in the safe, efficient, and stable operation of lithium-ion batteries. Since the difference between the surface temperature and core temperature of batteries under severe conditions can reach 5–10 ​°C, using the surface temperature as input feature of SOC estimation is unreasonable. Due to the high requirement for storage space, SOC estimation methods based on deep learning methods are limited to implement in embedded devices. In this paper, to achieve reasonable and high accuracy SOC estimation and provide support for battery thermal management, SOC estimation based on state of temperature (SOT) is implemented. And weight clustered-convolutional neural network-long short-term memory (WC-CNN-LSTM) is proposed to achieve high accuracy SOT and SOC estimation with small model sizes. A self-established dataset is used to verify the effectiveness of the proposed method and model. The WC-CNN-LSTM model with the number of clusters of 400 could achieve comparative accuracy with the baseline model with a 52.98% smaller model size and 25.08% more time consumption for model training on SOT estimation. And it could also achieve consistent and even better accuracy on SOC estimation with the baseline model with a small model size.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信