Model-based testing of asynchronously communicating distributed controllers using validated mappings to formal representations

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Bence Graics, Milán Mondok, Vince Molnár, István Majzik
{"title":"Model-based testing of asynchronously communicating distributed controllers using validated mappings to formal representations","authors":"Bence Graics,&nbsp;Milán Mondok,&nbsp;Vince Molnár,&nbsp;István Majzik","doi":"10.1016/j.scico.2025.103265","DOIUrl":null,"url":null,"abstract":"<div><div>Programmable controllers are gaining prevalence even in distributed safety-critical applications, e.g., in the railway and aerospace industries. In general, such systems are integrated using various loosely-coupled reactive components and must satisfy critical requirements. Thus, the verification of the design models and systematic testing of the implementation are essential tasks, which can be encumbered by the systems' distributed characteristics. In addition, the correctness of these verification methods is also vital. This paper, on the one hand, presents a model-based integration test generation (MBT) approach leveraging hidden formal methods based on the collaborating statechart models of the components. Statecharts can be integrated using various composition modes (e.g., synchronous and asynchronous) and then automatically mapped (via a symbolic transition systems formalism – XSTS) into the input formalisms of model checker back-ends, namely UPPAAL, Theta, Spin and nuXmv. The model checkers are utilized to generate tests based on formalized properties adhering to multiple coverage criteria. Furthermore, the paper presents a complementing validation approach for the proposed MBT approach based on demonstrating the semantic equivalence of high-level design models and the derived formal models used by the integrated model checkers for verification and test generation. The approaches are implemented in our open source Gamma Statechart Composition Framework and evaluated on industrial-scale distributed controller subsystems from the railway industry.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"242 ","pages":"Article 103265"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000048","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Programmable controllers are gaining prevalence even in distributed safety-critical applications, e.g., in the railway and aerospace industries. In general, such systems are integrated using various loosely-coupled reactive components and must satisfy critical requirements. Thus, the verification of the design models and systematic testing of the implementation are essential tasks, which can be encumbered by the systems' distributed characteristics. In addition, the correctness of these verification methods is also vital. This paper, on the one hand, presents a model-based integration test generation (MBT) approach leveraging hidden formal methods based on the collaborating statechart models of the components. Statecharts can be integrated using various composition modes (e.g., synchronous and asynchronous) and then automatically mapped (via a symbolic transition systems formalism – XSTS) into the input formalisms of model checker back-ends, namely UPPAAL, Theta, Spin and nuXmv. The model checkers are utilized to generate tests based on formalized properties adhering to multiple coverage criteria. Furthermore, the paper presents a complementing validation approach for the proposed MBT approach based on demonstrating the semantic equivalence of high-level design models and the derived formal models used by the integrated model checkers for verification and test generation. The approaches are implemented in our open source Gamma Statechart Composition Framework and evaluated on industrial-scale distributed controller subsystems from the railway industry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of Computer Programming
Science of Computer Programming 工程技术-计算机:软件工程
CiteScore
3.80
自引率
0.00%
发文量
76
审稿时长
67 days
期刊介绍: Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design. The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice. The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including • Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software; • Design, implementation and evaluation of programming languages; • Programming environments, development tools, visualisation and animation; • Management of the development process; • Human factors in software, software for social interaction, software for social computing; • Cyber physical systems, and software for the interaction between the physical and the machine; • Software aspects of infrastructure services, system administration, and network management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信