Adaptive Stochastic Gradient Descent (SGD) for erratic datasets

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Idriss Dagal , Kürşat Tanriöven , Ahmet Nayir , Burak Akın
{"title":"Adaptive Stochastic Gradient Descent (SGD) for erratic datasets","authors":"Idriss Dagal ,&nbsp;Kürşat Tanriöven ,&nbsp;Ahmet Nayir ,&nbsp;Burak Akın","doi":"10.1016/j.future.2024.107682","DOIUrl":null,"url":null,"abstract":"<div><div>Stochastic Gradient Descent (SGD) is a highly efficient optimization algorithm, particularly well suited for large datasets due to its incremental parameter updates. In this study, we apply SGD to a simple linear classifier using logistic regression, a widely used method for binary classification tasks. Unlike traditional batch Gradient Descent (GD), which processes the entire dataset simultaneously, SGD offers enhanced scalability and performance for streaming and large-scale data. Our experiments reveal that SGD outperforms GD across multiple performance metrics, achieving 45.83% accuracy compared to GD’s 41.67 %, and excelling in precision (60 % vs. 45.45 %), recall (100 % vs. 60 %), and F1-score (100 % vs. 62 %). Additionally, SGD achieves 99.99 % of Principal Component Analysis (PCA) accuracy, slightly surpassing GD’s 99.92 %.</div><div>These results highlight SGD’s superior efficiency and flexibility for large-scale data environments, driven by its ability to balance precision and recall effectively. To further enhance SGD’s robustness, the proposed method incorporates adaptive learning rates, momentum, and logistic regression, addressing traditional GD drawbacks. These modifications improve the algorithm’s stability, convergence behavior, and applicability to complex, large-scale optimization tasks where standard GD often struggles, making SGD a highly effective solution for challenging data-driven scenarios.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107682"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24006460","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic Gradient Descent (SGD) is a highly efficient optimization algorithm, particularly well suited for large datasets due to its incremental parameter updates. In this study, we apply SGD to a simple linear classifier using logistic regression, a widely used method for binary classification tasks. Unlike traditional batch Gradient Descent (GD), which processes the entire dataset simultaneously, SGD offers enhanced scalability and performance for streaming and large-scale data. Our experiments reveal that SGD outperforms GD across multiple performance metrics, achieving 45.83% accuracy compared to GD’s 41.67 %, and excelling in precision (60 % vs. 45.45 %), recall (100 % vs. 60 %), and F1-score (100 % vs. 62 %). Additionally, SGD achieves 99.99 % of Principal Component Analysis (PCA) accuracy, slightly surpassing GD’s 99.92 %.
These results highlight SGD’s superior efficiency and flexibility for large-scale data environments, driven by its ability to balance precision and recall effectively. To further enhance SGD’s robustness, the proposed method incorporates adaptive learning rates, momentum, and logistic regression, addressing traditional GD drawbacks. These modifications improve the algorithm’s stability, convergence behavior, and applicability to complex, large-scale optimization tasks where standard GD often struggles, making SGD a highly effective solution for challenging data-driven scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信