Using explainable deep learning to improve decision quality: Evidence from carbon trading market

IF 6.7 2区 管理学 Q1 MANAGEMENT
Yang Zhao, Jianzhou Wang, Shuai Wang, Jingwei Zheng, Mengzheng Lv
{"title":"Using explainable deep learning to improve decision quality: Evidence from carbon trading market","authors":"Yang Zhao,&nbsp;Jianzhou Wang,&nbsp;Shuai Wang,&nbsp;Jingwei Zheng,&nbsp;Mengzheng Lv","doi":"10.1016/j.omega.2025.103281","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve the United Nations Sustainable Development Goals (SDGs), reducing global greenhouse gas emissions is a top priority. Academia and industry have recognized the importance of carbon market management in promoting low-carbon development. However, traditional methods exhibit limitations in balancing accuracy and explainability, thereby reducing trust between users and decision-making models. To address this, we develop a data-driven model to enhance decision quality. Specifically, we evaluate and compare deep learning (DL) algorithms of various structures to explore the most appropriate techniques for modeling high-dimensional nonlinear carbon price data. Furthermore, we incorporate model-agnostic interpretation techniques to infer the contribution of the influencing factors to carbon prices. The results indicate that the predictive performance of the DL algorithm after feature selection and parameter optimization significantly improves. The findings reveal Internet big data and geopolitical risks as key features of carbon prices, complementing traditional indicators such as energy prices, economy, and climate, which exhibit lagged effects, regional heterogeneity, and interaction. These findings deepen our understanding of carbon price formation mechanisms and bolster managers’ ability to utilize artificial intelligence for effective decision-making, thereby supporting the achievement of the SDGs.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"133 ","pages":"Article 103281"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048325000076","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve the United Nations Sustainable Development Goals (SDGs), reducing global greenhouse gas emissions is a top priority. Academia and industry have recognized the importance of carbon market management in promoting low-carbon development. However, traditional methods exhibit limitations in balancing accuracy and explainability, thereby reducing trust between users and decision-making models. To address this, we develop a data-driven model to enhance decision quality. Specifically, we evaluate and compare deep learning (DL) algorithms of various structures to explore the most appropriate techniques for modeling high-dimensional nonlinear carbon price data. Furthermore, we incorporate model-agnostic interpretation techniques to infer the contribution of the influencing factors to carbon prices. The results indicate that the predictive performance of the DL algorithm after feature selection and parameter optimization significantly improves. The findings reveal Internet big data and geopolitical risks as key features of carbon prices, complementing traditional indicators such as energy prices, economy, and climate, which exhibit lagged effects, regional heterogeneity, and interaction. These findings deepen our understanding of carbon price formation mechanisms and bolster managers’ ability to utilize artificial intelligence for effective decision-making, thereby supporting the achievement of the SDGs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Omega-international Journal of Management Science
Omega-international Journal of Management Science 管理科学-运筹学与管理科学
CiteScore
13.80
自引率
11.60%
发文量
130
审稿时长
56 days
期刊介绍: Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信