A Large Neighborhood Search-based approach to tackle the very large scale Team Orienteering Problem in industrial context

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Charly Chaigneau , Nathalie Bostel , Axel Grimault
{"title":"A Large Neighborhood Search-based approach to tackle the very large scale Team Orienteering Problem in industrial context","authors":"Charly Chaigneau ,&nbsp;Nathalie Bostel ,&nbsp;Axel Grimault","doi":"10.1016/j.cor.2024.106954","DOIUrl":null,"url":null,"abstract":"<div><div>The Team Orienteering Problem (TOP) is an optimization problem belonging to the class of Vehicle Routing Problem with Profits in which the objective is to maximize the total profit collected by visiting customers while being limited to a time limit. This paper deals with the very large scale TOP in an industrial context. In this context, computing time is decisive and classical methods may fail to provide good solutions in a reasonable computational time. To do so, we propose a Large Neighborhood Search (LNS) combined with various mechanisms in order to reduce the computational time of the method. It is applied on classical sets of instances from the literature and on a new set of very large scale instances ranging from 1001 to 5395 customers that we adapted from Kobeaga et al. (2017). On the small scale set of instances, most best-known solutions are found. On the large scale set of instances, three new best-known solutions are found while the algorithm quickly gets more than half of the other best-known solutions.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"176 ","pages":"Article 106954"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030505482400426X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Team Orienteering Problem (TOP) is an optimization problem belonging to the class of Vehicle Routing Problem with Profits in which the objective is to maximize the total profit collected by visiting customers while being limited to a time limit. This paper deals with the very large scale TOP in an industrial context. In this context, computing time is decisive and classical methods may fail to provide good solutions in a reasonable computational time. To do so, we propose a Large Neighborhood Search (LNS) combined with various mechanisms in order to reduce the computational time of the method. It is applied on classical sets of instances from the literature and on a new set of very large scale instances ranging from 1001 to 5395 customers that we adapted from Kobeaga et al. (2017). On the small scale set of instances, most best-known solutions are found. On the large scale set of instances, three new best-known solutions are found while the algorithm quickly gets more than half of the other best-known solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信