NURBS curve interpolation strategy for smooth motion of industrial robots

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yonghao Guo, Wentie Niu, Hongda Liu, Zengao Zhang, Hao Zheng
{"title":"NURBS curve interpolation strategy for smooth motion of industrial robots","authors":"Yonghao Guo,&nbsp;Wentie Niu,&nbsp;Hongda Liu,&nbsp;Zengao Zhang,&nbsp;Hao Zheng","doi":"10.1016/j.mechmachtheory.2024.105885","DOIUrl":null,"url":null,"abstract":"<div><div>Smooth motion is crucial for industrial robots to efficiently execute accurate path tracking tasks. This paper proposes a NURBS curve interpolation strategy for smooth motion of industrial robots to reduce roughness and contour error. The strategy ensures smooth motion through two stages: feedrate planning and interpolation point parameter calculation. During the feedrate planning stage, kinematics and dynamics constraints, including torque and torque change rate, are considered in the parameter domain. Round-off error is considered, and an S-curve feedrate planning approach is employed to ensure the planned feedrate is smooth after transitioning from the parameter domain to the time domain. In the interpolation point parameter calculation stage, the displacement guidance curve is generated and updated based on the current situation. Interpolation point iteration compensation is conducted to ensure the interpolation output feedrate is smooth. Simulations and experiments are conducted to validate the effectiveness of the proposed strategy. The simulation results indicate that the proposed strategy effectively smooths the interpolation output feedrate while maintaining efficiency. The experimental results show that the strategy effectively reduces roughness and contour error.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105885"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003124","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Smooth motion is crucial for industrial robots to efficiently execute accurate path tracking tasks. This paper proposes a NURBS curve interpolation strategy for smooth motion of industrial robots to reduce roughness and contour error. The strategy ensures smooth motion through two stages: feedrate planning and interpolation point parameter calculation. During the feedrate planning stage, kinematics and dynamics constraints, including torque and torque change rate, are considered in the parameter domain. Round-off error is considered, and an S-curve feedrate planning approach is employed to ensure the planned feedrate is smooth after transitioning from the parameter domain to the time domain. In the interpolation point parameter calculation stage, the displacement guidance curve is generated and updated based on the current situation. Interpolation point iteration compensation is conducted to ensure the interpolation output feedrate is smooth. Simulations and experiments are conducted to validate the effectiveness of the proposed strategy. The simulation results indicate that the proposed strategy effectively smooths the interpolation output feedrate while maintaining efficiency. The experimental results show that the strategy effectively reduces roughness and contour error.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信