Double-level reconfigurable variation of Bennett-induced 8R mechanism and its evolved metamorphic 7R mechanism family

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Xi Kang , Qia Lin , Huijuan Feng , Bing Li
{"title":"Double-level reconfigurable variation of Bennett-induced 8R mechanism and its evolved metamorphic 7R mechanism family","authors":"Xi Kang ,&nbsp;Qia Lin ,&nbsp;Huijuan Feng ,&nbsp;Bing Li","doi":"10.1016/j.mechmachtheory.2024.105879","DOIUrl":null,"url":null,"abstract":"<div><div>Reconfigurable mechanisms are widely utilized in the design of intelligent robots and devices capable of adapting to diverse environments and requirements. While the design of reconfigurable mechanisms has garnered significant attention, previous studies have primarily focused on single types of reconfiguration, limiting the diversity and potential applications of such mechanisms. This paper introduces a double-level reconfigurable variation that integrates two reconfiguration approaches: joint rigidization and geometric constraints. This variation is derived from an 8R mechanism created by adding four joints to an equilateral Bennett mechanism. The original 8R mechanism serves as a foundation for generating a family of metamorphic mechanisms, including four distinct 7R mechanisms, through selective joint rigidization. Each of these 7R mechanisms exhibits multiple motion branches and singular configurations, which are analyzed in detail, with their metamorphic motion cycles illustrated graphically. In total, the mechanism family encompasses 39 unique motion branches. Some of these branches and singular configurations overlap, enabling transitions between mechanisms by altering rigidization patterns, thereby achieving a double-level reconfigurable variation. This study elucidates the interrelationships among the metamorphic mechanisms within this family, offering valuable insights for advancing the configuration synthesis and application of metamorphic mechanisms.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105879"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003069","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable mechanisms are widely utilized in the design of intelligent robots and devices capable of adapting to diverse environments and requirements. While the design of reconfigurable mechanisms has garnered significant attention, previous studies have primarily focused on single types of reconfiguration, limiting the diversity and potential applications of such mechanisms. This paper introduces a double-level reconfigurable variation that integrates two reconfiguration approaches: joint rigidization and geometric constraints. This variation is derived from an 8R mechanism created by adding four joints to an equilateral Bennett mechanism. The original 8R mechanism serves as a foundation for generating a family of metamorphic mechanisms, including four distinct 7R mechanisms, through selective joint rigidization. Each of these 7R mechanisms exhibits multiple motion branches and singular configurations, which are analyzed in detail, with their metamorphic motion cycles illustrated graphically. In total, the mechanism family encompasses 39 unique motion branches. Some of these branches and singular configurations overlap, enabling transitions between mechanisms by altering rigidization patterns, thereby achieving a double-level reconfigurable variation. This study elucidates the interrelationships among the metamorphic mechanisms within this family, offering valuable insights for advancing the configuration synthesis and application of metamorphic mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信